Optimization of swim depth across diverse taxa during horizontal travel

分类单元 生物 水平和垂直 地理 地质学 生态学 大地测量学
作者
Kimberley L. Stokes,Nicole Esteban,Paolo Casale,André Chiaradia,Yakup Kaska,Akiko Kato,Paolo Luschi,Yan Ropert‐Coudert,Holly J. Stokes,Graeme C. Hays
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (52)
标识
DOI:10.1073/pnas.2413768121
摘要

Semiaquatic taxa, including humans, often swim at the air–water interface where they waste energy generating surface waves. For fully marine animals however, theory predicts the most cost-efficient depth-use pattern for migrating, air-breathing species that do not feed in transit is to travel at around 2 to 3 times the depth of their body diameter, to minimize the vertical distance traveled while avoiding wave drag close to the surface. This has rarely been examined, however, due to depth measurement resolution issues at the surface. Here, we present evidence for the use of this strategy in the wild to the nearest centimeter and document the switch to shallow swimming during naturally occurring long-distance migrations. Using high-resolution depth-accelerometry and video data for little penguins ( Eudyptula minor ) and loggerhead turtles ( Caretta caretta ), satellite-relayed data for green turtles ( Chelonia mydas ), and literature data for further sea turtle, penguin, and whale species, we show that near-surface swimming is likely used broadly across nonforaging diving animals to minimize the cost of transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aiden完成签到,获得积分10
1秒前
槐序完成签到,获得积分20
1秒前
云隐完成签到,获得积分10
1秒前
hunting完成签到,获得积分10
4秒前
4秒前
共享精神应助潇潇雨歇采纳,获得10
5秒前
寂寞的寄文完成签到,获得积分10
5秒前
爱静静应助大力的无声采纳,获得10
6秒前
和平使命应助大力的无声采纳,获得10
6秒前
7秒前
jessie发布了新的文献求助10
7秒前
小马甲应助寂寞的寄文采纳,获得10
10秒前
11秒前
岸在海的深处完成签到 ,获得积分10
12秒前
xiao应助小吴采纳,获得10
13秒前
西溪完成签到 ,获得积分10
13秒前
14秒前
pi发布了新的文献求助10
15秒前
hunting发布了新的文献求助10
15秒前
15秒前
jujijuji应助Anquan采纳,获得10
15秒前
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
王黎应助科研通管家采纳,获得30
18秒前
李爱国应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
Neko应助科研通管家采纳,获得20
19秒前
19秒前
JiangHb完成签到,获得积分10
20秒前
21秒前
21秒前
Jian发布了新的文献求助20
21秒前
lingjuanwu发布了新的文献求助10
21秒前
南鸢完成签到 ,获得积分10
22秒前
今后应助wbn1212采纳,获得10
22秒前
光电彭于晏完成签到,获得积分10
22秒前
丰盛的煎饼应助LiShin采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851