失语症
医学
人口统计学的
一般化
冲程(发动机)
多语种神经科学
自然语言处理
人工智能
精神科
心理学
计算机科学
神经科学
工程类
数学分析
人口学
数学
社会学
机械工程
作者
Manuel Jose Marte,Erin Carpenter,Michael Scimeca,Marissa Russell-Meill,Claudia Peñaloza,Uli Grasemann,Risto Miikkulainen,Swathi Kıran
出处
期刊:Stroke
[Ovid Technologies (Wolters Kluwer)]
日期:2025-01-02
标识
DOI:10.1161/strokeaha.124.047867
摘要
Predicting treated language improvement (TLI) and transfer to the untreated language (cross-language generalization, CLG) after speech-language therapy in bilingual individuals with poststroke aphasia is crucial for personalized treatment planning. This study evaluated machine learning models to predict TLI and CLG and identified the key predictive features (eg, patient severity, demographics, and treatment variables) aligning with clinical evidence.
科研通智能强力驱动
Strongly Powered by AbleSci AI