岩溶
组织病理学
人工智能
数字化病理学
神经母细胞瘤
病理
医学
有丝分裂指数
肿瘤科
计算机科学
生物
有丝分裂
细胞凋亡
生物化学
遗传学
程序性细胞死亡
细胞生物学
细胞培养
作者
Siddhi Ramesh,Emma Dyer,Monica Pomaville,Kristina Doytcheva,James M. Dolezal,Sara Kochanny,Rachel TerHaar,Casey J. Mehrhoff,Kritika Patel,Jacob Brewer,Benjamin Kusswurm,Arlene Naranjo,Hiroyuki Shimada,Nicole A. Cipriani,Aliya N. Husain,Peter Pytel,Elizabeth Sokol,Susan L. Cohn,Rani E. George,Alexander T. Pearson,Mark A. Applebaum
标识
DOI:10.1038/s41698-024-00745-0
摘要
A deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported cohort to date. The model showed promising performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification with validation on an external test dataset, suggesting potential for AI-assisted neuroblastoma classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI