Utilizing Hybrid Mask and Upsampling Attention Gate for Multiple Immunohistochemistry Image Cell Recognition

增采样 计算机科学 人工智能 特征提取 稳健性(进化) 注释 模式识别(心理学) 计算机视觉 数据挖掘 图像(数学) 生物化学 化学 基因
作者
Xinwen Zhou,Jingyuan Yang,Ke Cheng,Qiu Liu,H. Sha,Ran Wei,Jingting Jiang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3527706
摘要

Multi-immunohistochemistry (mIHC) is a crucial technique for simultaneous detection of multiple cellular phenotypes within a single tissue section. Its application in cancer diagnosis and treatment underscores the importance of developing reliable automated cell detection and classification methods for mIHC images. However, existing approaches face significant challenges due to high cell density, heterogeneity, and the laborious nature of annotation. This study presents a novel automated cell detection and classification model specifically designed to address these limitations. The proposed model leverages a simplified point-based annotation approach, significantly reducing annotation effort compared to conventional methods. A hybrid masking strategy combining Gaussian and circular masks is introduced to accurately capture the diverse morphological characteristics of different cell types. To enhance detail detection against complex backgrounds and robustness in highly heterogeneous environments, a novel Upsampling Attention Gate (UAG) is proposed. This module effectively improves feature extraction by focusing on relevant information within the image. Finally, a post-processing module is incorporated to address cell adhesion issues during detection, further enhancing the accuracy of the model. Extensive experiments on the mIHC dataset demonstrate that the proposed method achieves F1 scores of 0.772 and 0.747 for cell detection and classification, respectively, outperforming existing methods across various performance metrics. This study offers a promising solution to the challenges of automated cell detection and classification in mIHC images, paving the way for improved diagnosis and treatment in cancer research. The code has been made publicly available: https://github.com/s153g/mIHC_Cell_Recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助嘻嘻采纳,获得10
刚刚
yanglina062发布了新的文献求助10
2秒前
乐乐应助东方翰采纳,获得10
3秒前
三哥哥w完成签到,获得积分20
3秒前
研友_5Zl9D8发布了新的文献求助10
4秒前
科研通AI5应助温柔的白秋采纳,获得10
5秒前
10秒前
东方翰完成签到,获得积分10
10秒前
11秒前
研友_5Zl9D8完成签到,获得积分10
11秒前
12秒前
12秒前
Even完成签到 ,获得积分10
13秒前
13秒前
852应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
1412应助科研通管家采纳,获得10
13秒前
墨殇应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
14秒前
LTT417应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
1412应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
14秒前
Leon应助科研通管家采纳,获得10
14秒前
梦旋发布了新的文献求助10
16秒前
轩仔完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673872
求助须知:如何正确求助?哪些是违规求助? 3229298
关于积分的说明 9785160
捐赠科研通 2939933
什么是DOI,文献DOI怎么找? 1611432
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344