Accuratede novodesign of high-affinity protein binding macrocycles using deep learning

蛋白质设计 化学 组合化学 计算生物学 蛋白质结构 生物化学 生物
作者
Stephen Rettie,David Juergens,Victor Adebomi,Yensi Flores Bueso,Qinqin Zhao,Alexandria N. Leveille,Andi Liu,Asim K. Bera,Joana A. Wilms,Alina Üffing,Alex Kang,Evans Brackenbrough,Mila Lamb,Stacey Gerben,Analisa Murray,Paul M. Levine,Manfred Schneider,Vibha Vasireddy,Sergey Ovchinnikov,Oliver H. Weiergräber
标识
DOI:10.1101/2024.11.18.622547
摘要

ABSTRACT The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource-intensive and provide little control over binding mode. Despite considerable progress in physics-based methods for peptide design and deep-learning methods for protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here, we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders against protein targets of interest. We test 20 or fewer designed macrocycles against each of four diverse proteins and obtain medium to high-affinity binders against all selected targets. Designs against MCL1 and MDM2 demonstrate K D between 1-10 μM, and the best anti-GABARAP macrocycle binds with a K D of 6 nM and a sub-nanomolar IC 50 in vitro . For one of the targets, RbtA, we obtain a high-affinity binder with K D < 10 nM despite starting from the target sequence alone due to the lack of an experimentally determined target structure. X-ray structures determined for macrocycle-bound MCL1, GABARAP, and RbtA complexes match very closely with the computational design models, with three out of the four structures demonstrating Ca RMSD of less than 1.5 Å to the design models. In contrast to library screening approaches for which determining binding mode can be a major bottleneck, the binding modes of RFpeptides-generated macrocycles are known by design, which should greatly facilitate downstream optimization. RFpeptides thus provides a powerful framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
硬币完成签到,获得积分10
刚刚
嗯嗯完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
王明磊完成签到 ,获得积分10
2秒前
浮游应助CHANG采纳,获得10
2秒前
3秒前
梦云点灯完成签到,获得积分10
3秒前
白元正完成签到,获得积分10
4秒前
美好凡阳发布了新的文献求助10
4秒前
小宋发布了新的文献求助10
4秒前
赘婿应助wnan_07采纳,获得10
4秒前
温庭筠发布了新的文献求助10
4秒前
风吹麦田给lubi的求助进行了留言
5秒前
77完成签到,获得积分10
5秒前
5秒前
牟潦草发布了新的文献求助10
5秒前
阿语完成签到 ,获得积分10
5秒前
GS草台班子完成签到,获得积分10
6秒前
6秒前
poker完成签到,获得积分10
7秒前
7秒前
supermaltose完成签到,获得积分10
8秒前
只道寻常发布了新的文献求助10
8秒前
9秒前
早日发paper完成签到,获得积分10
9秒前
小兔子乖乖完成签到 ,获得积分10
9秒前
9秒前
温言叮叮铛完成签到,获得积分10
9秒前
9秒前
world完成签到,获得积分10
9秒前
10秒前
美好凡阳完成签到,获得积分10
11秒前
Jared应助兜有米采纳,获得10
11秒前
一一完成签到,获得积分10
11秒前
elliot完成签到,获得积分10
11秒前
半圆亻发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645458
求助须知:如何正确求助?哪些是违规求助? 4768941
关于积分的说明 15029289
捐赠科研通 4804094
什么是DOI,文献DOI怎么找? 2568703
邀请新用户注册赠送积分活动 1525977
关于科研通互助平台的介绍 1485604