Construction professionals’ perspectives of adaptive learning adoption: an SEM-machine learning approach

适应性学习 知识管理 计算机科学 人工智能 机器学习 心理学 业务 数学教育
作者
Xinping Hu,Yang Miang Goh,Juliana Tay
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
标识
DOI:10.1108/ecam-07-2024-0896
摘要

Purpose This study aims to examine the acceptance of adaptive learning (AL) amongst construction professionals in Singapore. It seeks to compare their perceptions and attitudes with those of professionals from other industries to assess the rate of AL adoption in the construction sector. Furthermore, the study aims to identify the factors influencing construction professionals’ intention to adopt AL technologies. Design/methodology/approach A questionnaire survey was conducted with 188 construction professionals and 153 non-construction professionals. By employing the extended unified theory of acceptance and use of technology (UTAUT2) and the general extended technology acceptance model for e-learning (GETAMEL), this study also explored factors influencing construction professionals’ behavioural intention (BI) towards AL adoption. An SEM-machine learning approach facilitated the evaluation of the factors’ influence on BI. Findings A comparative analysis of the data found that construction professionals’ intention to use AL surpassed 75%, which had no significant difference with professionals from other industries. The findings revealed that learning value (LV) and self-efficacy (SE) were statistically significant predictors of construction professionals’ intentions to use AL. Furthermore, a supervised machine learning analysis identified performance expectancy (PE) as a crucial factor in predicting these intentions. Research limitations/implications The study’s focus on self-reported intentions and a specific demographic limits its generalisability; further research should examine actual usage across diverse cultures. Practical implications The results offered insights into construction professionals’ perceptions and attitudes towards AL adoption, guiding the integration of AL into construction professional development. Originality/value This paper addresses a recognised gap by examining construction professionals’ perceptions and attitudes towards adopting AL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summer发布了新的文献求助10
刚刚
yu发布了新的文献求助10
刚刚
lsn发布了新的文献求助10
刚刚
赘婿应助aixue采纳,获得10
刚刚
jackie发布了新的文献求助10
1秒前
ZW发布了新的文献求助10
1秒前
1秒前
2秒前
123发布了新的文献求助10
2秒前
大竹发布了新的文献求助10
2秒前
红鲤鱼的驴完成签到,获得积分10
2秒前
上官若男应助杰杰采纳,获得10
2秒前
pluto应助我爱学习采纳,获得10
4秒前
4秒前
徐才发布了新的文献求助90
4秒前
乐乐应助突突突采纳,获得10
4秒前
我超超超无奈完成签到,获得积分10
4秒前
夏来应助ouou采纳,获得10
4秒前
大开发布了新的文献求助10
5秒前
111发布了新的文献求助20
5秒前
六六完成签到 ,获得积分10
5秒前
Orange应助zz采纳,获得10
5秒前
chengenyuan完成签到,获得积分10
5秒前
苏小猫完成签到,获得积分10
5秒前
勤奋的擎完成签到,获得积分10
6秒前
科研通AI5应助秋山澪采纳,获得30
6秒前
英姑应助wcy采纳,获得10
6秒前
华仔应助勾勾1991采纳,获得10
6秒前
lsn完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI5应助jackie采纳,获得10
7秒前
深情安青应助小烦同学采纳,获得10
7秒前
sgssm完成签到,获得积分10
7秒前
8秒前
罗霄山完成签到,获得积分10
8秒前
大力问晴完成签到,获得积分10
8秒前
李善聪完成签到,获得积分10
9秒前
aaaaa完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
ISO 10993-1-2018 400
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3687984
求助须知:如何正确求助?哪些是违规求助? 3237878
关于积分的说明 9834310
捐赠科研通 2950007
什么是DOI,文献DOI怎么找? 1617617
邀请新用户注册赠送积分活动 764458
科研通“疑难数据库(出版商)”最低求助积分说明 738535