比例危险模型
流行病学
逻辑回归
工具箱
统计
危险系数
普通最小二乘法
危害
计量经济学
回归分析
社会流行病学
回归
数学
医学
计算机科学
置信区间
健康的社会决定因素
公共卫生
生物
生态学
内科学
护理部
程序设计语言
作者
Jinrui Fang,Melody S. Goodman,Marina Mautner Wizentier,Adolfo G. Cuevas,Jemar R. Bather
摘要
Abstract We recommend three well-established yet underused statistical methods in social epidemiology: Multiple Informant Models (MIMs), Fractional Regression Model (FRM), and Restricted Mean Survival Time (RMST). MIMs improve how we identify critical windows of exposure over time. FRM addresses the inadequacies of ordinary least squares and logistic regression when dealing with fractional outcomes that are naturally proportions or rates, thereby accommodating data at the boundaries of the unit interval without requiring transformations. RMST offers a robust alternative to the hazard ratio in the presence of non-proportional hazards, providing an interpretable summary of treatment effects over time that is not dependent on the proportional hazards assumption. We illustrate the utility of each method using simulated case examples. These methodologies enrich the analytical toolbox of social epidemiologists, offering refined approaches to unraveling the complexities of social determinants of health inequities.
科研通智能强力驱动
Strongly Powered by AbleSci AI