亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Text-DiFuse: An Interactive Multi-Modal Image Fusion Framework based on Text-modulated Diffusion Model

情态动词 计算机科学 融合 扩散 图像(数学) 图像融合 人工智能 计算机视觉 自然语言处理 物理 语言学 材料科学 哲学 高分子化学 热力学
作者
Hao Zhang,Lei Cao,Jiayi Ma
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.23905
摘要

Existing multi-modal image fusion methods fail to address the compound degradations presented in source images, resulting in fusion images plagued by noise, color bias, improper exposure, \textit{etc}. Additionally, these methods often overlook the specificity of foreground objects, weakening the salience of the objects of interest within the fused images. To address these challenges, this study proposes a novel interactive multi-modal image fusion framework based on the text-modulated diffusion model, called Text-DiFuse. First, this framework integrates feature-level information integration into the diffusion process, allowing adaptive degradation removal and multi-modal information fusion. This is the first attempt to deeply and explicitly embed information fusion within the diffusion process, effectively addressing compound degradation in image fusion. Second, by embedding the combination of the text and zero-shot location model into the diffusion fusion process, a text-controlled fusion re-modulation strategy is developed. This enables user-customized text control to improve fusion performance and highlight foreground objects in the fused images. Extensive experiments on diverse public datasets show that our Text-DiFuse achieves state-of-the-art fusion performance across various scenarios with complex degradation. Moreover, the semantic segmentation experiment validates the significant enhancement in semantic performance achieved by our text-controlled fusion re-modulation strategy. The code is publicly available at https://github.com/Leiii-Cao/Text-DiFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
liuyi666完成签到,获得积分10
15秒前
15秒前
16秒前
liuyi666发布了新的文献求助10
20秒前
21秒前
24秒前
Owen应助科研通管家采纳,获得10
32秒前
35秒前
现代的碧空完成签到,获得积分10
41秒前
58秒前
如意天荷完成签到,获得积分10
58秒前
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Asofi完成签到,获得积分10
1分钟前
1分钟前
商毛毛发布了新的文献求助10
1分钟前
赘婿应助大野采纳,获得10
1分钟前
1分钟前
思源应助00采纳,获得10
2分钟前
2分钟前
zwb完成签到 ,获得积分10
2分钟前
FashionBoy应助仁爱裘采纳,获得10
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
吉洪发布了新的文献求助10
2分钟前
小二郎应助默默善愁采纳,获得10
2分钟前
2分钟前
吉洪完成签到,获得积分20
2分钟前
2分钟前
伊萨卡发布了新的文献求助10
3分钟前
CHENG完成签到,获得积分20
3分钟前
3分钟前
3分钟前
shain完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413213
求助须知:如何正确求助?哪些是违规求助? 4530372
关于积分的说明 14122866
捐赠科研通 4445331
什么是DOI,文献DOI怎么找? 2439187
邀请新用户注册赠送积分活动 1431234
关于科研通互助平台的介绍 1408672