Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:34 (10): 1780-1805 被引量:24
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴昊东发布了新的文献求助10
刚刚
罗子旭完成签到,获得积分10
刚刚
小新发布了新的文献求助10
3秒前
4秒前
吴昊东完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助30
5秒前
洵音完成签到 ,获得积分10
7秒前
Hello应助kyt采纳,获得10
9秒前
Summer发布了新的文献求助10
9秒前
奥特超曼完成签到,获得积分0
10秒前
小新完成签到,获得积分10
14秒前
bai完成签到,获得积分10
14秒前
shi0331完成签到,获得积分10
15秒前
zino发布了新的文献求助20
17秒前
18秒前
19秒前
ll应助LY采纳,获得10
22秒前
Orange应助猪猪hero采纳,获得10
23秒前
yyr发布了新的文献求助10
23秒前
YEM发布了新的文献求助10
25秒前
orixero应助yyr采纳,获得10
27秒前
27秒前
现代的卿完成签到 ,获得积分10
31秒前
31秒前
33秒前
36秒前
祁醉完成签到,获得积分10
39秒前
lily完成签到,获得积分10
40秒前
一往之前发布了新的文献求助10
40秒前
大模型应助zino采纳,获得10
41秒前
41秒前
在水一方应助LXY采纳,获得10
41秒前
吱吱吱发布了新的文献求助20
42秒前
43秒前
mogu完成签到,获得积分10
43秒前
祁醉发布了新的文献求助30
44秒前
在途中完成签到,获得积分10
45秒前
喜气杨杨完成签到 ,获得积分10
45秒前
猪猪hero发布了新的文献求助10
47秒前
放牧山水发布了新的文献求助30
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432