Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:34 (10): 1780-1805 被引量:24
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤冷面应助Candice采纳,获得10
刚刚
1秒前
ALL发布了新的文献求助10
2秒前
大模型应助青筠采纳,获得10
2秒前
durian发布了新的文献求助10
2秒前
3秒前
冷酷向薇发布了新的文献求助10
4秒前
丫丫完成签到 ,获得积分20
4秒前
4秒前
扶摇完成签到 ,获得积分10
4秒前
闵卷完成签到,获得积分10
4秒前
且徐行完成签到,获得积分10
5秒前
怡然太阳发布了新的文献求助10
5秒前
HC发布了新的文献求助30
5秒前
JACKPAN给JACKPAN的求助进行了留言
6秒前
米米发布了新的文献求助10
6秒前
精明凡雁发布了新的文献求助10
6秒前
852应助goofs采纳,获得10
6秒前
shuai_guo完成签到,获得积分10
7秒前
mochi完成签到,获得积分10
8秒前
8秒前
8秒前
善学以致用应助猪猪hero采纳,获得10
8秒前
Jay发布了新的文献求助50
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
P_Chem发布了新的文献求助150
10秒前
11秒前
12秒前
李健的粉丝团团长应助ACE采纳,获得10
12秒前
共享精神应助HC采纳,获得10
13秒前
讨厌的十九岁完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
水煮牛肉火锅完成签到,获得积分10
15秒前
彭于晏应助愿景采纳,获得10
15秒前
16秒前
汉堡包应助ACE采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344