已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:34 (10): 1780-1805 被引量:24
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dddddhr完成签到 ,获得积分10
4秒前
聆(*^_^*)完成签到,获得积分10
5秒前
权雨灵发布了新的文献求助10
5秒前
wanci应助jjdeng采纳,获得10
9秒前
xfdywy发布了新的文献求助10
10秒前
大嘴巴子应助jj采纳,获得10
10秒前
大嘴巴子应助jj采纳,获得10
10秒前
11秒前
15秒前
星忆眠发布了新的文献求助10
16秒前
17秒前
爆米花应助goodgay133采纳,获得10
18秒前
19秒前
22秒前
连国发布了新的文献求助10
22秒前
23秒前
迷人如天发布了新的文献求助10
25秒前
zcx完成签到,获得积分10
26秒前
27秒前
GHR完成签到,获得积分10
28秒前
magnolia发布了新的文献求助10
29秒前
溪流冲浪发布了新的文献求助10
30秒前
Aimee发布了新的文献求助10
30秒前
32秒前
35秒前
35秒前
36秒前
36秒前
36秒前
36秒前
科研通AI6.1应助木木采纳,获得10
37秒前
37秒前
yangz10完成签到 ,获得积分10
37秒前
37秒前
38秒前
YEM发布了新的文献求助10
38秒前
38秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958