已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:34 (10): 1780-1805 被引量:24
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
3秒前
萌小鱼完成签到 ,获得积分10
4秒前
zdyfychenyan完成签到 ,获得积分20
4秒前
小马甲应助曹能豪采纳,获得10
8秒前
小北完成签到,获得积分10
9秒前
9秒前
immunity完成签到,获得积分10
14秒前
15秒前
Lucas应助赤恩采纳,获得10
16秒前
曹能豪发布了新的文献求助10
18秒前
Virtual应助life采纳,获得20
18秒前
Hanny发布了新的文献求助30
19秒前
19秒前
沸腾的大海完成签到,获得积分10
22秒前
zdyfychenyan关注了科研通微信公众号
23秒前
23秒前
外向的如冰完成签到,获得积分10
24秒前
27秒前
28秒前
SUNNYONE完成签到 ,获得积分10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
单薄绿竹完成签到,获得积分10
30秒前
life完成签到,获得积分10
30秒前
潇洒的语蝶完成签到 ,获得积分10
32秒前
33秒前
赤恩发布了新的文献求助10
33秒前
33秒前
科研通AI5应助泥巴采纳,获得10
33秒前
多久上课发布了新的文献求助10
34秒前
Touching完成签到 ,获得积分10
34秒前
35秒前
深情安青应助多久上课采纳,获得10
37秒前
多发paper啊完成签到,获得积分10
37秒前
科研通AI6应助小憨憨采纳,获得10
38秒前
life关注了科研通微信公众号
41秒前
充电宝应助啰友痕武次子采纳,获得10
42秒前
小蘑菇完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581261
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380921
捐赠科研通 3673784
什么是DOI,文献DOI怎么找? 2024768
邀请新用户注册赠送积分活动 1058578
科研通“疑难数据库(出版商)”最低求助积分说明 945295