Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:34 (10): 1780-1805 被引量:24
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助就爱从黑巧采纳,获得30
1秒前
步步发布了新的文献求助20
1秒前
Young应助毛毛采纳,获得10
1秒前
科研通AI6应助毛毛采纳,获得10
1秒前
2秒前
2秒前
Young应助Dprisk采纳,获得10
2秒前
Folium完成签到,获得积分10
2秒前
小二郎应助gao采纳,获得10
3秒前
Grinde发布了新的文献求助10
3秒前
俏皮晓曼发布了新的文献求助10
3秒前
隐形曼青应助姿姿采纳,获得10
3秒前
July发布了新的文献求助10
3秒前
nini应助球球的铲屎官采纳,获得20
4秒前
4秒前
归尘发布了新的文献求助10
4秒前
4秒前
5秒前
pretzel完成签到,获得积分10
5秒前
大个应助微笑翠桃采纳,获得10
5秒前
阔达远山完成签到,获得积分10
6秒前
li关注了科研通微信公众号
7秒前
lulu发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
旺旺完成签到,获得积分10
8秒前
科研通AI6应助啦啦王采纳,获得10
8秒前
wangcc完成签到 ,获得积分10
8秒前
8秒前
cc发布了新的文献求助30
9秒前
Summeryz920完成签到,获得积分10
9秒前
10秒前
11秒前
Yjy发布了新的文献求助10
11秒前
慕青应助大胆妙竹采纳,获得10
11秒前
11秒前
段非非完成签到,获得积分10
11秒前
马晓玲发布了新的文献求助10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736