Beyond Drift Diffusion Models: Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM

计算机科学 强化学习 机器学习 人工智能 工具箱 贝叶斯概率 推论 Python(编程语言) 贝叶斯推理 多样性(控制论) 操作系统 程序设计语言
作者
Alexander Fengler,Krishn Bera,Mads L. Pedersen,Michael J. Frank
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:34 (10): 1780-1805 被引量:16
标识
DOI:10.1162/jocn_a_01902
摘要

Abstract Computational modeling has become a central aspect of research in the cognitive neurosciences. As the field matures, it is increasingly important to move beyond standard models to quantitatively assess models with richer dynamics that may better reflect underlying cognitive and neural processes. For example, sequential sampling models (SSMs) are a general class of models of decision-making intended to capture processes jointly giving rise to RT distributions and choice data in n-alternative choice paradigms. A number of model variations are of theoretical interest, but empirical data analysis has historically been tied to a small subset for which likelihood functions are analytically tractable. Advances in methods designed for likelihood-free inference have recently made it computationally feasible to consider a much larger spectrum of SSMs. In addition, recent work has motivated the combination of SSMs with reinforcement learning models, which had historically been considered in separate literatures. Here, we provide a significant addition to the widely used HDDM Python toolbox and include a tutorial for how users can easily fit and assess a (user-extensible) wide variety of SSMs and how they can be combined with reinforcement learning models. The extension comes batteries included, including model visualization tools, posterior predictive checks, and ability to link trial-wise neural signals with model parameters via hierarchical Bayesian regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jingjing-8995完成签到,获得积分10
3秒前
赵亮发布了新的文献求助10
4秒前
5秒前
6秒前
zhj发布了新的文献求助10
7秒前
8秒前
li发布了新的文献求助10
8秒前
9秒前
慕青应助年华采纳,获得10
11秒前
12秒前
在下不才发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
科研通AI2S应助Sunshine采纳,获得10
13秒前
情怀应助水杯不离手采纳,获得30
15秒前
今后应助柚子采纳,获得10
16秒前
薄荷味发布了新的文献求助10
17秒前
doby发布了新的文献求助10
18秒前
铁肺吴完成签到,获得积分10
18秒前
上官若男应助Yang采纳,获得10
18秒前
紫瓜完成签到,获得积分10
19秒前
丘比特应助在下不才采纳,获得10
20秒前
科研通AI2S应助vic采纳,获得10
20秒前
Orange应助快乐的呼呼采纳,获得10
21秒前
23秒前
隐形曼青应助欣慰的盼芙采纳,获得10
23秒前
务实的笑白完成签到,获得积分10
23秒前
24秒前
li完成签到,获得积分10
27秒前
iNk发布了新的文献求助10
27秒前
27秒前
赵亮发布了新的文献求助10
28秒前
28秒前
29秒前
顾矜应助安东路采纳,获得10
29秒前
慕青应助风中的玲采纳,获得10
29秒前
年华发布了新的文献求助10
29秒前
lvlvlvsh发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136325
求助须知:如何正确求助?哪些是违规求助? 2787443
关于积分的说明 7781374
捐赠科研通 2443393
什么是DOI,文献DOI怎么找? 1299137
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939