催化作用
材料科学
纳米颗粒
纳米材料
银纳米粒子
还原剂
涂层
化学工程
Zeta电位
抗菌活性
基质(水族馆)
复合数
纳米技术
化学
复合材料
有机化学
工程类
地质学
海洋学
生物
细菌
遗传学
作者
Shuo Zhang,Weikun Jiang,Guolong Liu,Shiwei Liu,Honglei Chen,Gaojin Lyu,Guihua Yang,Yu Liu,Yonghao Ni
标识
DOI:10.1016/j.jcis.2022.09.018
摘要
The size of silver nanoparticles (Ag NPs) and loading amount of Ag NPs onto their substrate/carrier are two key factors for their efficient applications. Herein, we present a facile method for in situ synthesizing ultrafine and highly loaded Ag NPs on the surface of tannin-coated catechol-formaldehyde resin (TA-CFR) nanospheres. TA-CFR nanospheres act as green and highly efficient reducing agents for converting silver ions (Ag+) into Ag NPs, and the size of resultant Ag NPs is only ∼ 7.5 nm, and the Ag NPs loading capacity of TA-CFR is as high as 61.5 wt%, both of which contribute to the very high specific surface area of Ag NPs. Consequently, the as-synthesized TA-CFR@Ag composites show high catalytic performance, and the catalytic rate for the reduction of 4-nitrophenol is almost 10 times higher than that of the control. Meanwhile, TA-CFR@Ag composites also possess high antibacterial activity, efficiently inhibiting the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, tannin coating (thickness: ∼ 15 nm) minimizes the aggregation of Ag NPs, and enhances the reusability and stability of resultant Ag NPs, because of their high surface charges (the zeta potential is up to -65.5 ± 1.9 mV) and strong coordination capability with Ag NPs. This work provides a new frontier to develop multifunctional nanomaterials focusing on the green catalyst synthesis and environmental-remedy applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI