Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions

比例(比率) 人工神经网络 数据科学 计算机科学 人工智能 地理 地图学
作者
Yangfan Hu,Zheng Qian,Guoqi Li,Huajin Tang,Gang Pan
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2409.02111
摘要

Deep learning has revolutionized artificial intelligence (AI), achieving remarkable progress in fields such as computer vision, speech recognition, and natural language processing. Moreover, the recent success of large language models (LLMs) has fueled a surge in research on large-scale neural networks. However, the escalating demand for computing resources and energy consumption has prompted the search for energy-efficient alternatives. Inspired by the human brain, spiking neural networks (SNNs) promise energy-efficient computation with event-driven spikes. To provide future directions toward building energy-efficient large SNN models, we present a survey of existing methods for developing deep spiking neural networks, with a focus on emerging Spiking Transformers. Our main contributions are as follows: (1) an overview of learning methods for deep spiking neural networks, categorized by ANN-to-SNN conversion and direct training with surrogate gradients; (2) an overview of network architectures for deep spiking neural networks, categorized by deep convolutional neural networks (DCNNs) and Transformer architecture; and (3) a comprehensive comparison of state-of-the-art deep SNNs with a focus on emerging Spiking Transformers. We then further discuss and outline future directions toward large-scale SNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lvhuiqi完成签到,获得积分10
2秒前
3秒前
silencemch完成签到,获得积分10
4秒前
NexusExplorer应助123123采纳,获得10
4秒前
共享精神应助啦啦啦采纳,获得10
5秒前
科研通AI5应助早日毕业采纳,获得10
7秒前
8秒前
8秒前
江伊发布了新的文献求助10
8秒前
时间不移民完成签到 ,获得积分10
9秒前
静途完成签到,获得积分10
10秒前
yuyuyu998完成签到,获得积分10
10秒前
赘婿应助行者采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
Emma完成签到,获得积分10
12秒前
jj824完成签到 ,获得积分10
12秒前
科目三应助LEON采纳,获得10
13秒前
hao完成签到,获得积分10
14秒前
94line发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
卿佑发布了新的文献求助30
17秒前
貔貅发布了新的文献求助10
17秒前
嗯嗯发布了新的文献求助10
17秒前
英俊的铭应助自娱自乐采纳,获得10
18秒前
搜集达人应助hao采纳,获得10
18秒前
19秒前
大模型应助111采纳,获得10
19秒前
20秒前
Ava应助一叶知秋采纳,获得10
21秒前
22秒前
微笑梦旋发布了新的文献求助10
22秒前
今后应助桦辰采纳,获得10
23秒前
23秒前
安容天发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463