脑-机接口
运动表象
脑电图
任务(项目管理)
计算机科学
学习迁移
人工智能
主题(文档)
语音识别
心理学
工程类
神经科学
系统工程
图书馆学
作者
Yihan Wang,Jiaxing Wang,Weiqun Wang,Jianqiang Su,Chayut Bunterngchit,Zeng‐Guang Hou
出处
期刊:IEEE Transactions on Biomedical Engineering
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-11
标识
DOI:10.1109/tbme.2024.3474049
摘要
Motor imagery-based brain-computer interfaces (MI-BCIs) have been playing an increasingly vital role in neural rehabilitation. However, the long-term task-based calibration required for enhanced model performance leads to an unfriendly user experience, while the inadequacy of EEG data hinders the performance of deep learning models. To address these challenges, a task-free transfer learning strategy (TFTL) for EEG-based cross-subject & cross-dataset MI-BCI is proposed for calibration time reduction and multi-center data co-modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI