清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A survey analysis of the adoption of large language models among pathologists

医学 病理
作者
Thiyaphat Laohawetwanit,Daniel Pinto,Andrey Bychkov
出处
期刊:American Journal of Clinical Pathology [Oxford University Press]
标识
DOI:10.1093/ajcp/aqae093
摘要

Abstract Objectives We sought to investigate the adoption and perception of large language model (LLM) applications among pathologists. Methods A cross-sectional survey was conducted, gathering data from pathologists on their usage and views concerning LLM tools. The survey, distributed globally through various digital platforms, included quantitative and qualitative questions. Patterns in the respondents’ adoption and perspectives on these artificial intelligence tools were analyzed. Results Of 215 respondents, 100 (46.5%) reported using LLMs, particularly ChatGPT (OpenAI), for professional purposes, predominantly for information retrieval, proofreading, academic writing, and drafting pathology reports, highlighting a significant time-saving benefit. Academic pathologists demonstrated a better level of understanding of LLMs than their peers. Although chatbots sometimes provided incorrect general domain information, they were considered moderately proficient concerning pathology-specific knowledge. The technology was mainly used for drafting educational materials and programming tasks. The most sought-after feature in LLMs was their image analysis capabilities. Participants expressed concerns about information accuracy, privacy, and the need for regulatory approval. Conclusions Large language model applications are gaining notable acceptance among pathologists, with nearly half of respondents indicating adoption less than a year after the tools’ introduction to the market. They see the benefits but are also worried about these tools’ reliability, ethical implications, and security.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空天德发布了新的文献求助10
5秒前
tranphucthinh完成签到,获得积分10
9秒前
情怀应助科研通管家采纳,获得10
14秒前
所得皆所愿完成签到 ,获得积分10
19秒前
winfree完成签到 ,获得积分10
29秒前
榴莲千层完成签到 ,获得积分10
33秒前
温如军完成签到 ,获得积分10
46秒前
虚幻元风完成签到 ,获得积分10
1分钟前
正直的夏真完成签到 ,获得积分10
1分钟前
欣喜大地完成签到 ,获得积分10
1分钟前
Hiaoliem完成签到 ,获得积分10
1分钟前
nihaoxiaoai完成签到,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
狂奔的蜗牛完成签到 ,获得积分10
2分钟前
深情安青应助木耳采纳,获得10
2分钟前
3分钟前
翁怜晴完成签到,获得积分10
3分钟前
翁怜晴发布了新的文献求助10
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
Akim应助Decline采纳,获得10
3分钟前
jerry完成签到 ,获得积分10
3分钟前
糖宝完成签到 ,获得积分10
3分钟前
香蕉觅云应助雪山飞龙采纳,获得10
3分钟前
guoxihan完成签到,获得积分10
3分钟前
精明书桃完成签到 ,获得积分10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
杳鸢应助雪山飞龙采纳,获得30
4分钟前
charliechen完成签到 ,获得积分10
4分钟前
croissante完成签到 ,获得积分10
4分钟前
淞淞于我完成签到 ,获得积分10
4分钟前
菠萝谷波完成签到 ,获得积分10
4分钟前
杳鸢应助雪山飞龙采纳,获得30
4分钟前
爱静静应助雪山飞龙采纳,获得10
5分钟前
SciGPT应助sasa采纳,获得10
5分钟前
巴山石也完成签到 ,获得积分10
5分钟前
顺利的曼寒完成签到 ,获得积分10
5分钟前
雪山飞龙完成签到,获得积分10
5分钟前
zhdjj完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150623
求助须知:如何正确求助?哪些是违规求助? 2802063
关于积分的说明 7846122
捐赠科研通 2459415
什么是DOI,文献DOI怎么找? 1309243
科研通“疑难数据库(出版商)”最低求助积分说明 628725
版权声明 601757