Generative AIBIM: An automatic and intelligent structural design pipeline integrating BIM and generative AI

生成设计 计算机科学 生成语法 管道(软件) 范围(计算机科学) 人工智能 建筑信息建模 公制(单位) 过程(计算) 判别式 生成模型 人机交互 工程类 程序设计语言 相容性(地球化学) 化学工程 运营管理
作者
Zhili He,Yu-Hsing Wang,Jian Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:114: 102654-102654
标识
DOI:10.1016/j.inffus.2024.102654
摘要

AI-based intelligent structural design represents a transformative approach that addresses the inefficiencies inherent in traditional structural design practices. This paper innovates the existing AI-based design frameworks from four aspects and proposes Generative AIBIM: an automatic and intelligent structural design pipeline that integrates Building Information Modeling (BIM) and generative AI. First, the proposed pipeline not only broadens the application scope of BIM, which aligns with BIM's growing relevance in civil engineering, but also marks a significant supplement to previous methods that relied solely on CAD drawings. Second, in Generative AIBIM, a two-stage generation framework incorporating generative AI (TGAI), inspired by the human drawing process, is designed to simplify the complexity of the structural design problem. Third, for the generative AI model in TGAI, this paper pioneers to fuse physical conditions into diffusion models (DMs) to build a novel physics-based conditional diffusion model (PCDM). In contrast to conventional DMs, on the one hand, PCDM directly predicts shear wall drawings to focus on similarity, and on the other hand, PCDM effectively fuses cross-domain information, i.e., design drawings (image data), timesteps, and physical conditions, by integrating well-designed attention modules. Additionally, a new evaluation system including objective and subjective measures (i.e., ScoreIoU and FID) is designed to comprehensively evaluate models' performance, complementing the evaluation system in the traditional methods only adopting the objective metric. The quantitative results demonstrate that PCDM significantly surpasses recent state-of-the-art (SOTA) techniques (StructGAN and its variants) across both measures: ScoreIoU of PCDM is 30% higher and FID of PCDM is lower than 1/3 of that of the best competitor. The qualitative experimental results highlight PCDM's superior capabilities in generating high perceptual quality design drawings adhering to essential design criteria. In addition, benefiting from the fusion of physical conditions, PCDM effectively supports diverse and creative designs tailored to building heights and seismic precautionary intensities, showcasing its unique and powerful generation and generalization capabilities. Associated ablation studies further demonstrate the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111发布了新的文献求助10
3秒前
mmm发布了新的文献求助10
5秒前
Behappy完成签到 ,获得积分10
7秒前
慕青应助11111采纳,获得10
11秒前
布干维尔岛耐摔王完成签到,获得积分10
14秒前
16秒前
16秒前
16秒前
Akim应助hunajx采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
SPARK应助科研通管家采纳,获得10
17秒前
无极微光应助科研通管家采纳,获得20
17秒前
SPARK应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
22秒前
咚咚咚完成签到 ,获得积分10
23秒前
HHHH发布了新的文献求助10
25秒前
wxyshare应助车访枫采纳,获得10
26秒前
街道办柏阿姨完成签到 ,获得积分10
27秒前
andrew完成签到,获得积分10
30秒前
轻语完成签到 ,获得积分10
30秒前
Lucas应助11111采纳,获得30
32秒前
taster发布了新的文献求助10
34秒前
HHHH完成签到,获得积分10
35秒前
wanci应助mmm采纳,获得10
36秒前
着急的诗兰完成签到,获得积分10
36秒前
bingbing完成签到,获得积分10
37秒前
淅淅发布了新的文献求助10
38秒前
42秒前
刘十六完成签到 ,获得积分10
46秒前
风雨潇湘应助11111采纳,获得10
47秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852198
求助须知:如何正确求助?哪些是违规求助? 6276834
关于积分的说明 15627779
捐赠科研通 4968069
什么是DOI,文献DOI怎么找? 2678890
邀请新用户注册赠送积分活动 1623161
关于科研通互助平台的介绍 1579518