Entropy-Stabilized Multication Fluorides as a Conversion-Type Cathode for Li-Ion Batteries–Impact of Element Selection

材料科学 电化学 阴极 插层(化学) 同步加速器 离子 组态熵 兴奋剂 极化(电化学) 化学工程 无机化学 电极 热力学 光电子学 物理化学 化学 光学 物理 工程类 有机化学
作者
Jehee Park,Yingjie Yang,Haesun Park,Aditya Sundar,Sungsik Lee,Tiffany L. Kinnibrugh,Seoung‐Bum Son,Eungje Lee,Peter Zapol,Robert F. Klie,Jae Jin Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (42): 57151-57161 被引量:1
标识
DOI:10.1021/acsami.4c12920
摘要

Metal fluorides (e.g., FeF2 and FeF3) have received attention as conversion-type cathode materials for Li-ion batteries due to their higher theoretical capacity compared to that of common intercalation materials. However, their practical use has been hindered by low round-trip efficiency, voltage hysteresis, and capacity fading. Cation substitution has been proposed to address these challenges, and recent advancements in battery performance involve the introduction of entropy stabilization in an attempt to facilitate reversible conversion reactions by increasing configurational entropy. Building on this concept, high entropy fluorides with five cations were synthesized by using a simple mechanochemical route. In order to examine the impact of element selection, Co0.2Cu0.2Ni0.2Zn0.2Fe0.2F2 (HEF-Fe) was compared with Co0.2Cu0.2Ni0.2Zn0.2Mg0.2F2 (HEF-Mg), replacing electrochemically inactive Mg with Fe as an active participant in the conversion reaction. Combining electrochemical measurements with first-principles calculations, high-resolution electron microscopy, and synchrotron X-ray analysis, HEFs' battery performances and conversion reaction mechanisms were investigated in detail. The results highlighted that replacement of Mg with Fe was beneficial, with enhanced capacity, rate capability, and surface stability. In addition, it was found that HEF-Fe showed similar cycle stability without an electrochemically inactive element. These findings provide valuable insights for the design of high entropy multielement fluorides for improved Li-ion battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果发布了新的文献求助10
刚刚
1秒前
三三发布了新的文献求助10
2秒前
2秒前
2秒前
CAOHOU应助程式采纳,获得10
2秒前
3秒前
汤圆发布了新的文献求助10
3秒前
3秒前
小玉完成签到 ,获得积分10
3秒前
冷笑完成签到,获得积分10
3秒前
hyominhsu发布了新的文献求助10
4秒前
llllhh发布了新的文献求助10
4秒前
zyy完成签到,获得积分10
4秒前
4秒前
heavenhorse应助调皮的过客采纳,获得10
5秒前
英姑应助cell采纳,获得10
5秒前
WN发布了新的文献求助10
6秒前
顾天佑发布了新的文献求助10
6秒前
moonho完成签到,获得积分10
6秒前
阿林琳琳发布了新的文献求助10
7秒前
千十一发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
nine发布了新的文献求助10
8秒前
9秒前
LEE发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
邱寻绿完成签到,获得积分10
12秒前
虚幻的亦旋完成签到,获得积分10
12秒前
三三完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
Kivala应助香菜采纳,获得10
14秒前
Bobi发布了新的文献求助10
14秒前
zpf关闭了zpf文献求助
14秒前
米儿完成签到,获得积分10
14秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771