Chirality-Mediated 1D-to-2D Phase Transition in Hybrid Lead Halide Perovskites

化学 卤化物 手性(物理) 相变 铅(地质) 化学物理 钙钛矿(结构) 相(物质) 凝聚态物理 纳米技术 结晶学 无机化学 有机化学 量子力学 物理 手征对称性 地质学 地貌学 Nambu–Jona Lasinio模型 材料科学 夸克
作者
Zhigang Li,Dong Xiaohui,Haipeng Song,Shi-Shuang Huang,Huan Hu,Ying Zhang,Xiang Wu,Wei Li,Xian‐He Bu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c11414
摘要

Dimensionality engineering plays a pivotal role in optimizing the performance, ensuring long-term stability, and expanding the versatile applications of lead halide perovskites (LHPs). Currently, the manipulation of LHP dimensions primarily occurs during the synthesis stage, a procedure hampered by constraints, including synthetic complexity and irreversibility. This investigation successfully achieved a transition from one-dimensional (1D) to two-dimensional (2D) structures in chiral LHPs by applying hydrostatic pressure. Remarkably, this pressure-induced transition in dimensionality is absent in the racemic analogue due to the staggered arrangement of inorganic chains and the elevated steric hindrance posed by the organic cations. Notably, the hydrogen bonding between organic cations and the inorganic framework adopts a symmetrical arrangement in the racemic system but a helical configuration along the 1D chain direction in the chiral counterparts. This distinct helical arrangement induces a consequential distortion in the inorganic moiety, resulting in the emergence of a spin-polarized Rashba-Dresselhaus texture that explains the chirality's electronic spin origin. Furthermore, both experimental and density functional theory calculation results demonstrate that the 1D-to-2D phase transition in chiral halide perovskites can induce significant modifications in the electronic structures and associated optical emissions. In summary, the findings unveil novel avenues for manipulating optoelectronic properties in chiral perovskites through dimensionality engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
刚刚
1秒前
善学以致用应助sy采纳,获得10
2秒前
充电宝应助1651616采纳,获得10
2秒前
Bambi发布了新的文献求助10
2秒前
简单雁开发布了新的文献求助10
2秒前
you完成签到 ,获得积分10
3秒前
春和景明发布了新的文献求助30
4秒前
4秒前
所所应助桃淘采纳,获得10
5秒前
Hawaii完成签到,获得积分10
5秒前
Lovuan完成签到,获得积分20
5秒前
6秒前
LK完成签到 ,获得积分10
6秒前
7秒前
白菜完成签到 ,获得积分10
8秒前
3333完成签到,获得积分20
8秒前
aa1212121完成签到,获得积分10
8秒前
9秒前
3333发布了新的文献求助10
11秒前
思源应助Fx采纳,获得10
12秒前
刘肖发布了新的文献求助10
13秒前
13秒前
15秒前
lalala应助好运莲莲采纳,获得20
15秒前
DirectorO发布了新的文献求助10
15秒前
Owen应助飞快的寻云采纳,获得10
18秒前
狂野萤应助牛牛采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
besatified应助科研通管家采纳,获得30
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
19秒前
今后应助科研通管家采纳,获得10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256348
求助须知:如何正确求助?哪些是违规求助? 2898650
关于积分的说明 8301746
捐赠科研通 2567765
什么是DOI,文献DOI怎么找? 1394718
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557