亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 哲学 语言学 营销 业务 操作系统
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
被引量:2
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光轮2000发布了新的文献求助10
刚刚
寻舟者发布了新的文献求助10
3秒前
5秒前
z_rainbow发布了新的文献求助10
7秒前
寻舟者完成签到,获得积分10
10秒前
dawnfrf完成签到,获得积分10
20秒前
ciallo发布了新的文献求助10
21秒前
传统的怀薇完成签到 ,获得积分10
28秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
今后应助科研通管家采纳,获得10
40秒前
nini完成签到,获得积分10
51秒前
皮皮完成签到 ,获得积分10
54秒前
情怀应助光轮2000采纳,获得10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
weihua完成签到 ,获得积分10
1分钟前
1分钟前
大个应助ciallo采纳,获得10
1分钟前
1分钟前
xtt发布了新的文献求助10
1分钟前
光轮2000发布了新的文献求助10
1分钟前
Lucas应助橘子有点酸采纳,获得10
1分钟前
1分钟前
MR_芝欧发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI2S应助光轮2000采纳,获得10
2分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
xaopng完成签到,获得积分10
3分钟前
3分钟前
Lucas应助lzy采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
追寻的月光完成签到,获得积分10
3分钟前
光轮2000发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603285
求助须知:如何正确求助?哪些是违规求助? 4688360
关于积分的说明 14853336
捐赠科研通 4688979
什么是DOI,文献DOI怎么找? 2540586
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471594