CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 哲学 语言学 营销 业务 操作系统
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
被引量:2
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
胡小妹完成签到,获得积分10
2秒前
shanshan3000完成签到,获得积分10
2秒前
科研通AI5应助舒适路人采纳,获得10
3秒前
NXK发布了新的文献求助10
5秒前
5秒前
魔幻安青发布了新的文献求助10
6秒前
打打应助Esther采纳,获得30
7秒前
7秒前
马尔尼菲蓝状菌完成签到,获得积分10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
14秒前
abcdefg发布了新的文献求助10
15秒前
科研通AI6应助mjhh采纳,获得10
16秒前
Yam发布了新的文献求助10
17秒前
苒苒完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
aqaq完成签到,获得积分10
20秒前
聪明伊完成签到,获得积分10
21秒前
song发布了新的文献求助10
21秒前
Sera完成签到,获得积分10
21秒前
21秒前
21秒前
Dr大壮完成签到,获得积分10
21秒前
JJMM发布了新的文献求助10
24秒前
充电宝应助song采纳,获得10
25秒前
魔幻安青完成签到,获得积分10
25秒前
陬廿六发布了新的文献求助10
26秒前
Wangxia发布了新的文献求助10
26秒前
27秒前
28秒前
谦让之云完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914910
求助须知:如何正确求助?哪些是违规求助? 4189107
关于积分的说明 13009918
捐赠科研通 3958099
什么是DOI,文献DOI怎么找? 2170084
邀请新用户注册赠送积分活动 1188316
关于科研通互助平台的介绍 1096015