CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 语言学 操作系统 哲学 业务 营销
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
被引量:2
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glaciersu完成签到,获得积分10
刚刚
Sparks完成签到,获得积分10
刚刚
陈佳琦发布了新的文献求助10
1秒前
wen完成签到,获得积分10
1秒前
酥酥脆完成签到,获得积分10
1秒前
JUN发布了新的文献求助10
1秒前
斯文败类应助yangyujie25采纳,获得10
1秒前
2秒前
2秒前
2秒前
www完成签到 ,获得积分10
2秒前
半间歇式聚合反应完成签到 ,获得积分10
2秒前
2秒前
祖之微笑发布了新的文献求助30
2秒前
研友_VZG7GZ应助无限的千凝采纳,获得10
3秒前
3秒前
chengymao完成签到,获得积分10
3秒前
优秀真发布了新的文献求助30
3秒前
上官若男应助科研小趴菜采纳,获得30
3秒前
Dding完成签到,获得积分10
3秒前
lnyi完成签到,获得积分20
3秒前
334niubi666完成签到 ,获得积分10
4秒前
pengpengpeng完成签到,获得积分10
4秒前
lee发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
大个应助Ghy采纳,获得10
5秒前
现代的大叔完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
7秒前
爱听歌的梦寒关注了科研通微信公众号
7秒前
SciGPT应助东哥采纳,获得10
7秒前
打打应助搞怪的金鑫采纳,获得10
7秒前
清新完成签到,获得积分10
8秒前
8秒前
迟迟完成签到,获得积分10
8秒前
8秒前
研友_pnxBe8完成签到,获得积分10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297