CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 语言学 操作系统 哲学 业务 营销
作者
Wei Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
licheng完成签到,获得积分10
1秒前
娇气的书桃完成签到,获得积分10
2秒前
岑夜南完成签到 ,获得积分10
3秒前
Xiangguang发布了新的文献求助10
3秒前
lu525完成签到,获得积分10
4秒前
惬意的晚风完成签到,获得积分10
8秒前
HH完成签到,获得积分10
9秒前
nulinuli完成签到 ,获得积分10
11秒前
FashionBoy应助海心采纳,获得10
14秒前
16秒前
李家新29完成签到,获得积分10
17秒前
nt1119完成签到 ,获得积分10
19秒前
19秒前
19秒前
eiland完成签到,获得积分10
21秒前
DR_Su发布了新的文献求助10
23秒前
阳yang完成签到,获得积分10
24秒前
精明梦柏发布了新的文献求助10
24秒前
QY发布了新的文献求助10
26秒前
29秒前
Leoling完成签到,获得积分10
30秒前
研友_8DoPDZ完成签到,获得积分10
30秒前
淡然凌兰完成签到,获得积分10
31秒前
dy完成签到,获得积分10
31秒前
17835152738完成签到,获得积分10
32秒前
好好完成签到,获得积分10
33秒前
隐形曼青应助enli采纳,获得10
36秒前
韩寒完成签到 ,获得积分10
36秒前
lihaifeng完成签到,获得积分10
37秒前
勤奋大地完成签到,获得积分10
39秒前
匆匆赶路人完成签到 ,获得积分10
39秒前
40秒前
彭于晏应助YZL采纳,获得10
40秒前
yaocx完成签到,获得积分10
41秒前
Leoling发布了新的文献求助10
42秒前
yuncong323完成签到,获得积分10
42秒前
勤劳善良的胖蜜蜂完成签到 ,获得积分20
44秒前
段段完成签到,获得积分10
45秒前
拾柒完成签到,获得积分10
45秒前
麦穗完成签到,获得积分10
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162567
求助须知:如何正确求助?哪些是违规求助? 2813460
关于积分的说明 7900578
捐赠科研通 2473036
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175