CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 哲学 语言学 营销 业务 操作系统
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
被引量:2
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Magicer发布了新的文献求助10
刚刚
RenHP完成签到,获得积分10
刚刚
Wu发布了新的文献求助10
刚刚
马户的崛起完成签到,获得积分10
1秒前
科研通AI6应助章文荣采纳,获得10
1秒前
kkyy发布了新的文献求助10
1秒前
科研通AI6应助有趣的银采纳,获得10
1秒前
挥发的费洛蒙完成签到,获得积分10
2秒前
hhh完成签到,获得积分10
3秒前
Redback应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
大石头完成签到,获得积分10
4秒前
www完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研废物采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
AXQ发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
赘婿应助Mona采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
小鞠发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
敬老院N号应助科研通管家采纳,获得30
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172