CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 语言学 操作系统 哲学 业务 营销
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
被引量:2
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
不想当牛马完成签到,获得积分10
1秒前
1秒前
Plasma992575完成签到,获得积分10
1秒前
1秒前
虚幻唯雪发布了新的文献求助10
1秒前
大模型应助流星采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
Unstoppable发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
千叶儿完成签到,获得积分20
5秒前
一米阳光发布了新的文献求助10
5秒前
ding应助ppppp采纳,获得10
5秒前
科研通AI6.1应助11111采纳,获得10
5秒前
5秒前
月月发布了新的文献求助10
5秒前
RR发布了新的文献求助10
5秒前
NexusExplorer应助zql采纳,获得10
6秒前
顾矜应助王通采纳,获得10
6秒前
大模型应助一一采纳,获得10
6秒前
麦克发布了新的文献求助10
7秒前
传奇3应助102755采纳,获得10
7秒前
jy关闭了jy文献求助
7秒前
Ting发布了新的文献求助10
8秒前
李浩发布了新的文献求助10
8秒前
zy完成签到 ,获得积分10
8秒前
Qps发布了新的文献求助10
9秒前
友好雪枫完成签到,获得积分10
9秒前
jrzsy完成签到,获得积分10
10秒前
千叶儿发布了新的文献求助10
11秒前
11秒前
11秒前
叨叨发布了新的文献求助20
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207