CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large‐Scale Vision Model Feature Distillation Aggregation Network

分割 计算机科学 人工智能 特征(语言学) 市场细分 聚类分析 模式识别(心理学) 编码器 图像分割 机器学习 哲学 语言学 营销 业务 操作系统
作者
Xiao Ma,Jie Huang,Mengping Long,Xiaoxiao Li,Zhaoyi Ye,Wanting Hu,Yaxiaer Yalikun,Du Wang,Taobo Hu,Liye Mei,Lei Cheng
出处
期刊:Microscopy Research and Technique [Wiley]
标识
DOI:10.1002/jemt.24716
摘要

ABSTRACT Segment anything model (SAM) has attracted extensive interest as a potent large‐scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual‐image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource‐constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state‐of‐the‐art (SOTA) task‐specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer‐aided medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助lyla采纳,获得10
1秒前
2秒前
奔波儿灞发布了新的文献求助10
3秒前
4秒前
Anna完成签到,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
wu8577应助科研通管家采纳,获得10
7秒前
Kurt发布了新的文献求助10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
wu8577应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
arabidopsis应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
JamesPei应助Maggie采纳,获得10
13秒前
13秒前
研友_nxV4m8发布了新的文献求助10
13秒前
orixero应助Espionage采纳,获得10
14秒前
16秒前
随风完成签到,获得积分10
17秒前
17秒前
17秒前
Yu完成签到,获得积分10
18秒前
伊诺发布了新的文献求助10
18秒前
one完成签到,获得积分20
20秒前
Taemy完成签到,获得积分10
22秒前
24秒前
酷波er应助one采纳,获得10
25秒前
25秒前
123_完成签到,获得积分10
26秒前
FashionBoy应助TTiger007采纳,获得10
26秒前
不是二次元关注了科研通微信公众号
27秒前
ll完成签到 ,获得积分10
28秒前
mm发布了新的文献求助10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474