A machine learning tool for identifying newly diagnosed heart failure in individuals with known diabetes in primary care

医学 心力衰竭 糖尿病 心房颤动 内科学 冠状动脉疾病 优势比 心脏病学 内分泌学
作者
Per Wändell,Axel C. Carlsson,Julia Eriksson,Caroline Wachtler,Toralph Ruge
出处
期刊:Esc Heart Failure [Wiley]
标识
DOI:10.1002/ehf2.15115
摘要

Abstract Aims We aimed to create a predictive model utilizing machine learning (ML) to identify new cases of congestive heart failure (CHF) in individuals with diabetes in primary health care (PHC) through the analysis of diagnostic data. Methods We used a sex‐ and age‐matched case–control design. Cases of new CHF were identified across all outpatient care settings 2015–2022 ( n = 9098). We included individuals 30 years and above, by sex and age groups of 30–65 years and >65 years. The controls (five per case) were sampled from the individuals in 2015–2022 without CHF at any time between 2010 and 2022, in total 45 490. From the stochastic gradient boosting (SGB) technique model, we obtained a rank of the 10 most important factors related to newly diagnosed CHF in individuals with diabetes, with the normalized relative influence (NRI) score and a corresponding odds ratio of marginal effects (OR ME ). Area under curve (AUC) was calculated. Results For women 30–65 years and >65 years, we identified 488 and 3240 new cases of CHF, respectively, and men 30–65 years and >65 years 1196 and 4174 new cases. Among the 10 most important factors in the four groups (divided by sex and lower and higher age) for newly diagnosed CHF, we found the number of visits 12 months before diagnosis (NRI 44.3%–55.9%), coronary artery disease (NRI 2.9%–7.8%), atrial fibrillation and flutter (NRI 6.6%–12.2%) and ‘abnormalities of breathing’ (ICD‐10 code R06) (NRI 2.6%–4.4%) were predictive in all groups. For younger women, a diagnosis of COPD (NRI 2.7%) contributed to the predictive effect, while for older women, oedema (NRI 3.1%) and number of years with diabetes (NRI 3.5%) contributed to the predictive effect. For men in both age groups, chronic renal disease had predictive effect (NRI 3.9%–5.1%) The model prediction of CHF among patients with diabetes was high, AUC around 0.85 for the four groups, and with sensitivity over 0.783 and specificity over 0.708 for all four groups. Conclusions An SGB model using routinely collected data about diagnoses and number of visits in primary care, can accurately predict risk for diagnosis of heart failure in individuals with diabetes. Age and sex difference in predictive factors warrant further examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派大星完成签到 ,获得积分10
1秒前
稳重完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
3秒前
3秒前
何何何何完成签到 ,获得积分10
3秒前
bane.发布了新的文献求助10
4秒前
6秒前
ZJY完成签到,获得积分10
7秒前
Hello应助chen采纳,获得10
7秒前
xiangdemeilo发布了新的文献求助10
9秒前
CodeCraft应助weige采纳,获得10
10秒前
香蕉觅云应助weige采纳,获得10
10秒前
慕青应助luyuran采纳,获得10
10秒前
orixero应助Drwang采纳,获得10
12秒前
酷波er应助沧海一粟采纳,获得10
17秒前
乐乐应助重要的天寿采纳,获得10
21秒前
慕青应助重要的天寿采纳,获得10
21秒前
iamnets5发布了新的文献求助10
21秒前
彭于晏应助重要的天寿采纳,获得10
21秒前
传奇3应助重要的天寿采纳,获得10
21秒前
Zbx关闭了Zbx文献求助
22秒前
赘婿应助davidbry采纳,获得10
22秒前
satchzhao完成签到,获得积分10
23秒前
传奇3应助519采纳,获得10
24秒前
24秒前
25秒前
Solar energy发布了新的文献求助10
26秒前
辛勤的诗蕊完成签到,获得积分10
27秒前
123完成签到,获得积分10
27秒前
28秒前
29秒前
xch发布了新的文献求助10
31秒前
科研菜鸟发布了新的文献求助30
35秒前
Dceer发布了新的文献求助10
35秒前
好想被风刮走完成签到 ,获得积分10
37秒前
心木完成签到 ,获得积分10
38秒前
wanci应助zcg采纳,获得10
38秒前
39秒前
烟花应助开朗依霜采纳,获得10
40秒前
Vanessa发布了新的文献求助30
41秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392537
求助须知:如何正确求助?哪些是违规求助? 3003128
关于积分的说明 8807657
捐赠科研通 2689849
什么是DOI,文献DOI怎么找? 1473348
科研通“疑难数据库(出版商)”最低求助积分说明 681565
邀请新用户注册赠送积分活动 674351