A framework for drought monitoring and assessment from a drought propagation perspective under non-stationary environments

透视图(图形) 环境科学 环境资源管理 计算机科学 人工智能
作者
Xingchen Wei,Xia Wu,Hongbo Zhang,Tian Lan,Chengguo Su,Yanrui Wu,George Aggidis
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 175981-175981
标识
DOI:10.1016/j.scitotenv.2024.175981
摘要

According to the coupled influence of climate variation and anthropogenic activities, hydro-meteorological variables are hard to keep stationary in a changing environment. Consequently, the efficacy of traditional standardized drought indices, predicated upon the assumption of stationarity, has been called into question. In China, the challenge of drought monitoring and declaration is exacerbated by the need for multiple drought indices covering meteorological, agricultural, hydrological, and groundwater aspects, often lacking real-time availability. To address these challenges, we developed a framework for drought monitoring and assessment from a drought propagation perspective. Central to this is the Nonstationary Integrated Drought Index (NIDI), which integrates responses from meteorological, agricultural, hydrological, and groundwater droughts, accounting for climate change and anthropogenic influences. First, we analyse the process of drought propagation to select the suitable time scale standardized drought index. Subsequently, significant large-scale climatic indices are selected through linear and nonlinear correlation analyses to identify climate anomalies. Anthropogenic influences are assessed using indicators such as the Normalized Difference Vegetation Index (NDVI), Impervious Surface Ratio (ISR), and population density (POP). Nonstationary probability models are then developed for precipitation, soil moisture, runoff, and groundwater series, incorporating climatic and human-induced factors. Finally, the NIDI is calculated using a D-vine copula model, with parameter estimation and updating facilitated by a genetic algorithm, representing the temporal dependence structure among the variables. A case study in the Hulu River Basin of western China validated the NIDI. Results showed that the NIDI effectively accounts for nonstationary hydro-meteorological variables due to climate change and human activities, accurately reproducing their time-dependent structure. Compared to conventional indices like SPI, SSI, SRI, and SGI, the NIDI identifies more extreme drought events. In conclusion, the presented NIDI offers a more comprehensive approach to drought identification, providing valuable insights for accurate drought detection and effective drought-related policy-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥丁蒂法完成签到,获得积分10
1秒前
勤奋的灯完成签到 ,获得积分10
2秒前
666完成签到 ,获得积分10
2秒前
大Doctor陈发布了新的文献求助10
4秒前
中科路2020完成签到,获得积分10
5秒前
6秒前
ange完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
why完成签到,获得积分10
8秒前
8秒前
12秒前
洁净斑马发布了新的文献求助10
13秒前
菲菲完成签到 ,获得积分10
13秒前
偶吼吼完成签到,获得积分10
13秒前
Xu_W卜完成签到,获得积分10
13秒前
斯文钢笔完成签到 ,获得积分10
14秒前
敏敏完成签到 ,获得积分10
15秒前
ha完成签到 ,获得积分10
15秒前
畅快代亦完成签到,获得积分10
16秒前
16秒前
evilbatuu完成签到,获得积分10
17秒前
等待的代容完成签到,获得积分10
18秒前
丰富的大地完成签到,获得积分10
20秒前
中华牌老阿姨完成签到,获得积分0
21秒前
大Doctor陈发布了新的文献求助10
22秒前
劳达完成签到,获得积分10
23秒前
自然秋柳完成签到 ,获得积分10
23秒前
shinen完成签到,获得积分10
24秒前
poplar完成签到,获得积分10
25秒前
短巷完成签到 ,获得积分10
26秒前
忧伤的二锅头完成签到 ,获得积分10
26秒前
研友_ZzrWKZ完成签到 ,获得积分10
28秒前
狼来了aas完成签到,获得积分10
28秒前
大Doctor陈发布了新的文献求助10
29秒前
dlut0407完成签到,获得积分0
29秒前
鸢尾完成签到,获得积分10
30秒前
111111完成签到,获得积分10
31秒前
晚星完成签到,获得积分10
32秒前
kourosz完成签到,获得积分10
33秒前
细心的代天完成签到 ,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015