Rigid‐Flexible Coupled Dendritic Molecule Doping: General Approach to Activate Commercial Polymers into Harsh Condition‐ Tolerant Multi‐Reusable Strong Supramolecular Adhesives

胶粘剂 材料科学 超分子化学 聚合物 超分子聚合物 纳米技术 分子 兴奋剂 高分子化学 复合材料 化学 有机化学 光电子学 图层(电子)
作者
Jie Feng,Zi-Wei Lin,Yang Zhang,Long Fang,Qikai Zhu,Dingshan Yu
出处
期刊:Angewandte Chemie [Wiley]
被引量:1
标识
DOI:10.1002/anie.202411815
摘要

Abstract Developing functional adhesives combining strong adhesion, good recyclability and diverse harsh‐condition adaptability is a grand challenge. Here, we introduce a general dendritic molecule doping strategy to activate commercial polymers into a new family of supramolecular adhesives integrating high adhesion strength, ultralow temperature, water resistant and multi‐reusable properties. Our method involves rational design of a new rigid‐flexible coupled dendritic molecule—M 4 C 8 OH as a versatile dopant, while simple M 4 C 8 OH doping into commercial polymers can modulate internal and external non‐covalent interaction to enable H‐bonding enhanced interchain cross‐linking for tough cohesion along with enhanced interphase interaction. This endows 20 wt % M 4 C 8 OH‐doped polycaprolactone (PCL) adhesives (PCL‐M 4 C 8 OH) with improved adhesion strength on various substrates with the maximum increase up to 2.87 times that of PCL. In particular, the adhesion strengths of PCL‐M 4 C 8 OH on polymethyl methacrylate at 25 °C and −196 °C reach 4.67 and 3.58 MPa—1.9 and 2.3 times those of PCL and superior to diverse commercial adhesives and most reported adhesives. PCL‐M 4 C 8 OH also displays markedly‐improved multi‐usability and tolerance against ultralow temperature and diverse wet environments. Mechanism studies reveal the crucial role of M 4 C 8 OH molecular structures toward superior adhesion. Our method can be expanded to other polymer matrices, yielding diverse new supramolecular adhesives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
1秒前
2秒前
葶儿发布了新的文献求助10
2秒前
hgcyp完成签到,获得积分10
7秒前
ysh完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
wang完成签到,获得积分10
11秒前
Jzhang应助Yimim采纳,获得10
12秒前
沐风发布了新的文献求助20
13秒前
汉关发布了新的文献求助10
15秒前
15秒前
葶儿完成签到,获得积分10
15秒前
安详中蓝完成签到 ,获得积分10
16秒前
呆萌士晋发布了新的文献求助10
16秒前
16秒前
18秒前
呆头发布了新的文献求助10
20秒前
若水发布了新的文献求助200
21秒前
21秒前
22秒前
子川发布了新的文献求助10
22秒前
大头娃娃没下巴完成签到,获得积分10
24秒前
liyuchen完成签到,获得积分10
24秒前
CipherSage应助Lxxx_7采纳,获得10
25秒前
烟花应助永远少年采纳,获得10
25秒前
meng发布了新的文献求助10
27秒前
科研通AI5应助贪吃的猴子采纳,获得10
29秒前
29秒前
可爱的彩虹完成签到,获得积分10
29秒前
小确幸完成签到,获得积分10
29秒前
彭于晏应助毛毛虫采纳,获得10
30秒前
LilyChen完成签到 ,获得积分10
30秒前
Owen应助Su采纳,获得10
30秒前
30秒前
30秒前
31秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824