Triplet-triplet annihilation photon up-conversion: Accessing triplet excited states with minimum energy loss

系统间交叉 激发态 单重态裂变 消灭 单重态 背景(考古学) 三重态 化学物理 光化学 化学 纳米技术 原子物理学 材料科学 物理 量子力学 古生物学 生物
作者
Mushraf Hussain,Syed S. Razi,Tao Tao,František Hartl
出处
期刊:Journal of Photochemistry and Photobiology C-photochemistry Reviews [Elsevier BV]
卷期号:56: 100618-100618 被引量:10
标识
DOI:10.1016/j.jphotochemrev.2023.100618
摘要

Triplet-triplet annihilation photon up-conversion (TTA-PUC) has gained immense attention among the scientific community in the last decade due to its application in the fields of energy, biology, and photocatalytic organic synthesis. One of the main aims to improve the efficiency of these low-to-high photon-energy conversion is to reduce energy losses during the intersystem crossing (ISC). Since 2015, many strategies have been reported to address this challenge and a significant update has been noticed in this field. This review is aimed to critically analyze these updates and provide an outlook for the future. A detailed mechanism of ISC in thermally activated delayed-fluorescence (TADF) molecules that possess a small singlet−triplet energy gap, is discussed with a focus on its deeper understanding and the impact of molecular design. In this context, a range of selected organic and inorganic TADF molecules are thoroughly evaluated. Osmium(II) complexes that exhibit a spin-forbidden metal-to-ligand charge-transfer (3MLCT) transition in their Vis-NIR-IR absorption spectra and can be excited directly into their triplet state, thereby bypassing the energy loss during ISC, are also debated in sufficient detail for their advantages as well as shortcomings in being used in TTA-PUC. This work aims at reviewing the latest progress in this field, understanding the fundamental ISC mechanism of these photosensitizers, and critically addressing the challenges that are faced in this field. This review is anticipated to serve as a helpful script for identifying future directions and designing molecular sensitizers for TTA-PUC, which can sensitize the triplet state with minimum energy loss during ISC and can be helpful for increasing the anti-Stokes shift in TTA-PUC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny完成签到 ,获得积分10
刚刚
Jasper应助sun采纳,获得10
2秒前
852应助guojingjing采纳,获得10
4秒前
5秒前
发发完成签到,获得积分10
5秒前
6秒前
酷波er应助亓大大采纳,获得100
7秒前
香蕉觅云应助未完采纳,获得10
8秒前
8秒前
yu777发布了新的文献求助10
9秒前
9秒前
三七完成签到,获得积分10
10秒前
小酥肉发布了新的文献求助10
10秒前
Della发布了新的文献求助10
11秒前
素歌完成签到,获得积分10
11秒前
科研通AI5应助暖秋采纳,获得10
11秒前
12秒前
12秒前
13秒前
隐形曼青应助HH采纳,获得10
13秒前
6188完成签到 ,获得积分10
16秒前
华仔应助lxy采纳,获得30
16秒前
17秒前
清和发布了新的文献求助10
18秒前
guojingjing发布了新的文献求助10
19秒前
小咩发布了新的文献求助10
19秒前
天天快乐应助保安队长采纳,获得10
21秒前
yu777完成签到,获得积分10
21秒前
亓大大发布了新的文献求助100
21秒前
李健的小迷弟应助调皮秋采纳,获得10
22秒前
漫无目的完成签到,获得积分10
23秒前
咚咚发布了新的文献求助10
25秒前
吴未完成签到,获得积分10
26秒前
顾矜应助唠叨的千儿采纳,获得10
28秒前
28秒前
kup完成签到 ,获得积分10
29秒前
我是老大应助湛刘佳采纳,获得10
30秒前
科研小民工应助merryorange采纳,获得30
31秒前
Owen应助鳗鱼匕采纳,获得10
31秒前
科研通AI2S应助月亮上的猫采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3680810
求助须知:如何正确求助?哪些是违规求助? 3233020
关于积分的说明 9805727
捐赠科研通 2944281
什么是DOI,文献DOI怎么找? 1614607
邀请新用户注册赠送积分活动 762237
科研通“疑难数据库(出版商)”最低求助积分说明 737304