熔盐
盐(化学)
分子动力学
动力学(音乐)
化学
化学工程
生物系统
材料科学
化学物理
无机化学
计算化学
物理化学
物理
生物
工程类
声学
作者
Margarita Rekhtina,Maximilian Krödel,Yi‐Hsuan Wu,Agnieszka Kierzkowska,Felix Donat,Paula M. Abdala,Christoph R. Müller
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-06-28
卷期号:9 (26)
被引量:8
标识
DOI:10.1126/sciadv.adg5690
摘要
The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI