清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An efficient method of pavement distress detection based on improved YOLOv7

计算机科学 可扩展性 深度学习 人工智能 卷积(计算机科学) 目标检测 特征(语言学) 过程(计算) 数据挖掘 模式识别(心理学) 人工神经网络 语言学 哲学 数据库 操作系统
作者
Cancan Yi,Jun Liu,Tao Huang,Han Xiao,Hui Guan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (11): 115402-115402 被引量:7
标识
DOI:10.1088/1361-6501/ace929
摘要

Abstract Pavements play a pivotal role in infrastructure construction, so pavement distress detection (PDD) will greatly affect pavement service life and vehicle operation safety. Traditional manual detection and computer detection methods have such disadvantages as low efficiency, high cost and error-proneness. Thus, they are not suitable for high-speed detection tasks due to a large number of defects. Defect detection methods based on deep learning can achieve end-to-end target detection, generalize and monitor targets in real time. On such a basis, this paper has proposed an efficient method of PDD based on improved YOLOv7. YOLOv7, which is the best-performing object detection model in the YOLO series, is known for its high efficiency, strong scalability, and support for panoramic detection. It lays a solid foundation for enhancing PDD models. In this paper, this model will be improved based on model speed and accuracy. Firstly, SimAM attention module is employed to weight feature images, which has greatly improved model accuracy. Secondly, Ghost module in place of a partial deep convolution module is used to improve model running speed. Then, SIoU, instead of the original localization loss function, is performed to optimize the model training process. Finally, the proposed improved YOLOv7 model is applied to different road defect datasets and compared with other methods, such as Faster R-CNN, CenterNet, DETR, YOLOv6 and the original YOLOv7 model. The results show that the proposed method has ubiquitous advantages over the above-mentioned methods, with the average mAP, F 1 value and FPS value of 85.8%, 0.697 and 62.13 fps respectively. Furthermore, the values of the parameters Params and FLOPs also decrease to some degree.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tranphucthinh完成签到,获得积分10
35秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
2分钟前
科研通AI2S应助滕皓轩采纳,获得10
3分钟前
freemaisui应助滕皓轩采纳,获得10
3分钟前
科研通AI2S应助滕皓轩采纳,获得10
3分钟前
酷炫翠桃应助滕皓轩采纳,获得10
3分钟前
酷炫翠桃应助滕皓轩采纳,获得10
3分钟前
不配.应助滕皓轩采纳,获得10
3分钟前
不配.应助滕皓轩采纳,获得10
3分钟前
开放素完成签到 ,获得积分10
4分钟前
蜂蜜柚子完成签到 ,获得积分10
4分钟前
liwang9301完成签到,获得积分10
6分钟前
传奇3应助洛洛华曦采纳,获得10
6分钟前
丰富水云完成签到,获得积分10
6分钟前
丰富水云发布了新的文献求助10
7分钟前
psypsy应助SW采纳,获得10
7分钟前
ccc完成签到 ,获得积分10
7分钟前
m赤子心完成签到 ,获得积分10
7分钟前
icewuwu完成签到,获得积分10
8分钟前
belssingoo完成签到,获得积分10
8分钟前
迅速的蜡烛完成签到 ,获得积分10
8分钟前
8分钟前
cxk发布了新的文献求助10
8分钟前
石董宝宝完成签到,获得积分10
9分钟前
11分钟前
洛洛华曦发布了新的文献求助10
11分钟前
11分钟前
科目三应助nipanpan采纳,获得10
12分钟前
洛洛华曦完成签到,获得积分10
12分钟前
timick完成签到,获得积分10
12分钟前
WG关闭了WG文献求助
12分钟前
烟花应助YK采纳,获得10
13分钟前
13分钟前
YK发布了新的文献求助10
13分钟前
牛头人完成签到,获得积分10
13分钟前
muriel完成签到,获得积分10
14分钟前
YK关闭了YK文献求助
14分钟前
WG发布了新的文献求助10
14分钟前
YK发布了新的文献求助10
15分钟前
15分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229738
求助须知:如何正确求助?哪些是违规求助? 2877260
关于积分的说明 8198664
捐赠科研通 2544723
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647010
邀请新用户注册赠送积分活动 621836