Predicting Higher Order Links in Social Interaction Networks

可预测性 成对比较 节点(物理) 订单(交换) 计算机科学 GSM演进的增强数据速率 机器学习 人工智能 数据挖掘 工程类 数学 统计 财务 结构工程 经济
作者
Yongjian He,Xiao-Ke Xu,Jing Xiao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2796-2806 被引量:3
标识
DOI:10.1109/tcss.2023.3293075
摘要

Link prediction is a significant research problem in network science and has widespread applications. To date, much efforts have focused on predicting the links generated by pairwise interactions, but little is known about the predictability of links created by higher order interaction patterns. In this study, we investigated a new framework for predicting the links of different orders in social interaction networks based on edge orbit degrees (EODs) characterized by three-node and four-node graphlets. First, we defined a new problem of different-order link prediction to examine the predictability of links generated by different-order interaction patterns. Second, we quantified EODs for different-order link prediction and examined the performance of different-order predictors. The experiments on real-world networks show that higher order links are more accessible to be predicted than lower order (two-order) links. We also found that the closed three-node EOD has strong predictive power, which can accurately predict for both lower order and higher order links. Finally, we proposed a new method fusing multiple EODs (MEOD) to predict different-order links, and experiments indicate that the MEOD outperforms state-of-the-art methods. Our findings can not only effectively improve the link prediction performance of different orders, but also contribute to a better understanding of the organizational principle of higher order structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
baifeng发布了新的文献求助30
刚刚
luwenbin完成签到,获得积分10
刚刚
司佳雨给司佳雨的求助进行了留言
1秒前
1秒前
gggkky发布了新的文献求助20
2秒前
透心凉1987完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
执着的采枫完成签到 ,获得积分10
5秒前
ranjeah完成签到 ,获得积分10
5秒前
希喵子完成签到 ,获得积分20
6秒前
6秒前
Yuan发布了新的文献求助30
6秒前
寇博翔发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
薛琴完成签到,获得积分10
9秒前
baifeng完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
科研通AI6应助柒柒采纳,获得10
10秒前
11秒前
11秒前
11秒前
zhang发布了新的文献求助10
11秒前
缓慢寄翠给缓慢寄翠的求助进行了留言
11秒前
周小凡发布了新的文献求助20
11秒前
12秒前
13秒前
13秒前
15秒前
Aicici发布了新的文献求助10
16秒前
gyy发布了新的文献求助20
16秒前
ember发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336