SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS

成像体模 计算机科学 匹配(统计) 概化理论 人工智能 模式识别(心理学) 估计员 深度学习 核医学 数学 统计 医学
作者
Yohan Jun,Jaejin Cho,Xiaoqing Wang,Michael S. Gee,P. Ellen Grant,Berkin Bilgiç,Borjan Gagoski
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:90 (5): 2019-2032 被引量:8
标识
DOI:10.1002/mrm.29786
摘要

Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
starr完成签到,获得积分20
1秒前
情怀应助Jackking采纳,获得10
1秒前
kkk完成签到,获得积分10
1秒前
南北发布了新的文献求助10
1秒前
科研小满发布了新的文献求助10
2秒前
慕青应助daqisong采纳,获得10
2秒前
swan完成签到 ,获得积分20
2秒前
2秒前
绮罗完成签到 ,获得积分10
2秒前
Mic应助野性的曼香采纳,获得10
3秒前
samurai完成签到,获得积分10
3秒前
3秒前
丘比特应助dbq采纳,获得10
3秒前
ding应助dbq采纳,获得10
3秒前
3秒前
槑槑完成签到,获得积分10
3秒前
3秒前
Mlwwq发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
MathCheck发布了新的文献求助10
4秒前
Flipped完成签到,获得积分10
4秒前
温木成林完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
DIAPTERA完成签到,获得积分10
6秒前
脑洞疼应助JamesYang采纳,获得10
7秒前
害羞耷发布了新的文献求助10
7秒前
EasonZ发布了新的文献求助10
7秒前
鸡毛完成签到,获得积分10
8秒前
谢琳发布了新的文献求助10
8秒前
morning发布了新的文献求助10
8秒前
8秒前
weirdo发布了新的文献求助10
8秒前
9秒前
9秒前
陈云完成签到,获得积分10
10秒前
10秒前
cchh完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728114
求助须知:如何正确求助?哪些是违规求助? 5311529
关于积分的说明 15313202
捐赠科研通 4875379
什么是DOI,文献DOI怎么找? 2618794
邀请新用户注册赠送积分活动 1568399
关于科研通互助平台的介绍 1525035