SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS

成像体模 计算机科学 匹配(统计) 概化理论 人工智能 模式识别(心理学) 估计员 深度学习 核医学 数学 统计 医学
作者
Yohan Jun,Jaejin Cho,Xiaoqing Wang,Michael S. Gee,P. Ellen Grant,Berkin Bilgiç,Borjan Gagoski
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:90 (5): 2019-2032 被引量:8
标识
DOI:10.1002/mrm.29786
摘要

Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeon完成签到,获得积分10
1秒前
ky幻影完成签到,获得积分10
3秒前
4秒前
Evelyn完成签到,获得积分10
4秒前
maimu发布了新的文献求助20
4秒前
6秒前
9秒前
丘比特应助yeon采纳,获得10
9秒前
付ffgseg完成签到,获得积分10
9秒前
儒雅一凤完成签到 ,获得积分10
10秒前
桐桐应助美天仙采纳,获得10
11秒前
研友_VZG7GZ应助123采纳,获得10
13秒前
xl完成签到,获得积分10
13秒前
13秒前
Akim应助WZJ采纳,获得10
14秒前
科研通AI2S应助zzk采纳,获得10
16秒前
16秒前
17秒前
J_发布了新的文献求助10
18秒前
18秒前
21秒前
李龙波发布了新的文献求助10
23秒前
在水一方应助maimu采纳,获得20
23秒前
25秒前
科研圣体完成签到 ,获得积分10
26秒前
乐乐应助勤奋的蜗牛采纳,获得10
28秒前
123发布了新的文献求助10
29秒前
31秒前
zhitong完成签到,获得积分10
31秒前
勤奋的蜗牛完成签到,获得积分20
34秒前
秋水完成签到 ,获得积分10
34秒前
彭于晏应助echoxq采纳,获得10
35秒前
35秒前
潇洒的诗桃完成签到,获得积分0
37秒前
海城好人完成签到,获得积分10
38秒前
Eve完成签到,获得积分10
40秒前
123完成签到,获得积分10
41秒前
garlic完成签到,获得积分10
43秒前
xhy完成签到,获得积分20
44秒前
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262680
求助须知:如何正确求助?哪些是违规求助? 2903319
关于积分的说明 8324818
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398249
科研通“疑难数据库(出版商)”最低求助积分说明 654044
邀请新用户注册赠送积分活动 632642