SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS

成像体模 计算机科学 匹配(统计) 概化理论 人工智能 模式识别(心理学) 估计员 深度学习 核医学 数学 统计 医学
作者
Yohan Jun,Jaejin Cho,Xiaoqing Wang,Michael S. Gee,P. Ellen Grant,Berkin Bilgiç,Borjan Gagoski
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:90 (5): 2019-2032 被引量:8
标识
DOI:10.1002/mrm.29786
摘要

Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助遐蝶采纳,获得10
刚刚
ww完成签到,获得积分10
刚刚
慕青应助liuzengzhang666采纳,获得10
1秒前
1秒前
qwenrou发布了新的文献求助10
1秒前
2秒前
爱吃简便泡菜的小智完成签到 ,获得积分10
2秒前
7473完成签到,获得积分10
3秒前
zheng完成签到,获得积分10
3秒前
3秒前
不才完成签到,获得积分10
4秒前
4秒前
iNk应助NAN采纳,获得10
4秒前
所所应助阿星捌采纳,获得10
5秒前
pretty完成签到,获得积分10
5秒前
洁净的天思完成签到,获得积分10
5秒前
Triste发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助Godnian采纳,获得10
7秒前
7秒前
匆匆发布了新的文献求助10
7秒前
7秒前
squirrelcone完成签到 ,获得积分10
8秒前
8秒前
Owen应助kyukyubiu采纳,获得10
8秒前
无限的隶发布了新的文献求助10
9秒前
elsazhou发布了新的文献求助10
9秒前
奋斗蚂蚁完成签到,获得积分10
9秒前
不曾留步完成签到,获得积分10
11秒前
爆米花应助trial采纳,获得10
11秒前
11秒前
完美世界应助翁雁丝采纳,获得10
11秒前
12秒前
猪猪hero应助快乐的小天鹅采纳,获得10
12秒前
佐佐的2xL完成签到,获得积分10
12秒前
13秒前
cyw发布了新的文献求助10
13秒前
天天快乐应助HP采纳,获得10
13秒前
大个应助123采纳,获得10
14秒前
舒适白晴发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122