SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS

成像体模 计算机科学 匹配(统计) 概化理论 人工智能 模式识别(心理学) 估计员 深度学习 核医学 数学 统计 医学
作者
Yohan Jun,Jaejin Cho,Xiaoqing Wang,Michael S. Gee,P. Ellen Grant,Berkin Bilgiç,Borjan Gagoski
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:90 (5): 2019-2032 被引量:8
标识
DOI:10.1002/mrm.29786
摘要

Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水煮嘎嘎鸭完成签到,获得积分10
1秒前
1秒前
1秒前
可爱的函函应助my采纳,获得10
1秒前
smallsix发布了新的文献求助10
1秒前
Orange应助洋芋粑采纳,获得10
2秒前
21完成签到 ,获得积分10
3秒前
在水一方应助wenjian采纳,获得10
4秒前
4秒前
5秒前
AA发布了新的文献求助10
5秒前
传奇3应助GYH采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
zenabia发布了新的文献求助20
5秒前
今后应助陈123采纳,获得10
6秒前
好旺完成签到,获得积分10
7秒前
7秒前
小二郎应助半凡采纳,获得10
7秒前
Coral完成签到,获得积分10
7秒前
李健的粉丝团团长应助lhx采纳,获得10
8秒前
独特平灵发布了新的文献求助10
8秒前
8秒前
8秒前
艾小晞发布了新的文献求助10
8秒前
Ava应助五五五采纳,获得10
8秒前
orixero应助小毛线采纳,获得10
8秒前
浮游应助再煎熬采纳,获得10
9秒前
9秒前
9秒前
9秒前
samuel发布了新的文献求助10
9秒前
毕长富完成签到,获得积分10
10秒前
10秒前
科研通AI6应助StarSilverSaint采纳,获得30
10秒前
10秒前
酷波er应助贪玩嘉懿采纳,获得10
10秒前
迷走姑娘完成签到,获得积分10
10秒前
科研通AI6应助朱志伟采纳,获得10
10秒前
无辜凡完成签到,获得积分20
10秒前
路过蜻蜓发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940647
求助须知:如何正确求助?哪些是违规求助? 4206748
关于积分的说明 13075495
捐赠科研通 3985361
什么是DOI,文献DOI怎么找? 2182177
邀请新用户注册赠送积分活动 1197793
关于科研通互助平台的介绍 1110088