Doping Engineering to Modulate Lattice and Electronic Structure for Enhanced Piezocatalytic Therapy and Ferroptosis

材料科学 兴奋剂 活性氧 谷胱甘肽 纳米技术 肿瘤微环境 氧化应激 生物物理学 光电子学 癌症研究 化学 生物化学 肿瘤细胞 生物
作者
Boshi Tian,Ruixue Tian,Shaohua Liu,Yan Wang,Shili Gai,Ying Xie,Dan Yang,Fei He,Piaoping Yang,Jun Lin
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (38): e2304262-e2304262 被引量:140
标识
DOI:10.1002/adma.202304262
摘要

Abstract Piezocatalytic therapy, which generates reactive oxygen species (ROS) under mechanical force, has garnered extensive attention for its use in cancer therapy owing to its deep tissue penetration depth and less O 2 ‐dependence. However, the piezocatalytic therapeutic efficiency is limited owing to the poor piezoresponse, low separation of electron–hole pairs, and complicated tumor microenvironment (TME). Herein, a biodegradable, porous Mn‐doped ZnO (Mn–ZnO) nanocluster with enhanced piezoelectric effect is constructed via doping engineering. Mn‐doping not only induces lattice distortion to increase polarization but also creates rich oxygen vacancies (O V ) for suppressing the recombination of electron–hole pairs, leading to high‐efficiency generation of ROS under ultrasound irradiation. Moreover, Mn‐doped ZnO shows TME‐responsive multienzyme‐mimicking activity and glutathione (GSH) depletion ability owing to the mixed valence of Mn (II/III), further aggravating oxidative stress. Density functional theory calculations show that Mn‐doping can improve the piezocatalytic performance and enzyme activity of Mn–ZnO due to the presence of O V . Benefiting from the boosting of ROS generation and GSH depletion ability, Mn–ZnO can significantly accelerate the accumulation of lipid peroxide and inactivate glutathione peroxidase 4 (GPX4) to induce ferroptosis. The work may provide new guidance for exploring novel piezoelectric sonosensitizers for tumor therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助5476采纳,获得10
刚刚
螺蛳粉发布了新的文献求助10
刚刚
1秒前
酷波er应助lll采纳,获得10
2秒前
晚阳应助Kimberly采纳,获得30
2秒前
2秒前
www1发布了新的文献求助30
3秒前
NexusExplorer应助yeah采纳,获得10
3秒前
3秒前
null应助123采纳,获得10
3秒前
mayberichard发布了新的文献求助10
4秒前
4秒前
4秒前
tataliza1完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
星辰大海应助KON采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
项人发布了新的文献求助10
7秒前
7秒前
Anna发布了新的文献求助10
8秒前
深情安青应助清图采纳,获得10
8秒前
LSY完成签到,获得积分10
8秒前
娃haha发布了新的文献求助10
8秒前
9秒前
9秒前
顺心的鲂发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
muderder发布了新的文献求助10
10秒前
FartKing发布了新的文献求助10
10秒前
螺蛳粉完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727567
求助须知:如何正确求助?哪些是违规求助? 5309169
关于积分的说明 15311368
捐赠科研通 4875043
什么是DOI,文献DOI怎么找? 2618493
邀请新用户注册赠送积分活动 1568219
关于科研通互助平台的介绍 1524904