Decision‐making biases in suicide attempters with major depressive disorder: A computational modeling study using the balloon analog risk task (BART)

重性抑郁障碍 自杀意念 心理学 临床心理学 偏爱 萧条(经济学) 精神科 毒物控制 任务(项目管理) 人为因素与人体工程学 自杀预防 医学 认知 医疗急救 微观经济学 管理 经济 宏观经济学
作者
Qinyu Liu,Runqing Zhong,Xinlei Ji,Samuel Law,Fan Xiao,Yimin Wei,Shulin Fang,Xinyuan Kong,Xiaocui Zhang,Shuqiao Yao,Xiang Wang
出处
期刊:Depression and Anxiety [Wiley]
卷期号:39 (12): 845-857 被引量:8
标识
DOI:10.1002/da.23291
摘要

In the last decade, suicidality has been increasingly theorized as a distinct phenomenon from major depressive disorder (MDD), with unique psychological and neural mechanisms, rather than being mostly a severe symptom of MDD. Although decision-making biases have been widely reported in suicide attempters with MDD, little is known regarding what components of these biases can be distinguished from depressiveness itself.Ninety-three patients with current MDD (40 with suicide attempts [SA group] and 53 without suicide attempts [NS group]) and 65 healthy controls (HCs) completed psychometric assessments and the balloon analog risk task (BART). To analyze and compare decision-making components among the three groups, we applied a five-parameter Bayesian computational modeling.Psychological assessments showed that the SA group had greater suicidal ideation and psychological pain avoidance than the NS group. Computational modeling showed that both MDD groups had higher risk preference and lower ability to learn and adapt from within-task observations than HCs, without differences between the SA and NS patient groups. The SA group also had higher loss aversion than the NS and HC groups, which had similar loss aversion.Our BART and computational modeling findings suggest that psychological pain avoidance and loss aversion may be important suicide risk factor that are distinguishable from depression illness itself.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meimei完成签到,获得积分10
刚刚
朴实的薯片完成签到,获得积分10
1秒前
way完成签到,获得积分10
2秒前
脑洞疼应助Chan0501采纳,获得10
3秒前
fancy完成签到 ,获得积分10
3秒前
Maglev发布了新的文献求助10
4秒前
4秒前
含糊的代丝完成签到 ,获得积分10
4秒前
4秒前
5秒前
小九发布了新的文献求助20
5秒前
zhui发布了新的文献求助10
6秒前
通达完成签到,获得积分10
7秒前
FashionBoy应助猪猪hero采纳,获得10
7秒前
jy发布了新的文献求助10
7秒前
祥云完成签到,获得积分10
7秒前
无敌鱼完成签到,获得积分10
8秒前
ffu完成签到 ,获得积分10
8秒前
天天快乐应助好的采纳,获得10
8秒前
8秒前
香蕉觅云应助科研小白花采纳,获得10
8秒前
18746005898发布了新的文献求助10
9秒前
科研通AI5应助fanfan44390采纳,获得10
9秒前
9秒前
9秒前
小刺猬完成签到,获得积分10
9秒前
小庄发布了新的文献求助10
9秒前
唐人雄发布了新的文献求助10
10秒前
英姑应助Khr1stINK采纳,获得10
10秒前
爆米花应助甜筒采纳,获得10
10秒前
Gang完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助10
11秒前
Hello应助潇洒的青采纳,获得10
11秒前
11秒前
共享精神应助长孙归尘采纳,获得10
11秒前
12秒前
Evan123发布了新的文献求助10
12秒前
13秒前
xctdyl1992发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794