Source identification and spatial distribution of heavy metals in soil of central urban area of Chongqing, China

环境化学 Mercury(编程语言) 金属 主成分分析 土工试验 化学 冶金 土壤水分 环境科学 材料科学 土壤科学 无机化学 人工智能 计算机科学 程序设计语言
作者
Kun Zhu,Yankun Cai,Wende Chen,Peihao Peng
出处
期刊:Soil and Sediment Contamination: An International Journal [Informa]
卷期号:32 (6): 771-788 被引量:3
标识
DOI:10.1080/15320383.2022.2141684
摘要

To understand the characteristics of heavy metal pollution in soil and identify the source of heavy metals, 342 surface soil samples were collected in Chongqing, China. The contents of 11 heavy metals (i.e., arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni), mercury (Hg), antimony (Sb), manganese (Mn), and molybdenum (Mo)) were determined. The Principal Component analysis/absolute Principal component fraction (PCA/APCS) receptor model, the classified regression (CATREG) model, and the hot spot model were employed to analyze the data. The contents of As, Cd, Cr, Pb, Cu, Zn, Ni, Hg, Sb, Mn, and Mo in soil were 5.80, 0.13, 76.56, 25.55, 23.99, 75.58, 30.50, 0.05, 0.64, 573.32, and 0.56 mg·kg−1, respectively. The results of principal component analysis showed that the main heavy metal elements under the first principal component load were Cu, Ni, Zn, Mn, Cr, Pb, and Cd. The second principal component is mainly loaded with Mo, As, Hg, and Sb. The results of classified regression analysis showed that population density mainly affected Cu (0.54), soil mainly affected Ni (0.41), Sb (0.49), Zn (0.47), and Mn (0.21), and water quality mainly affected As (0.45) and Mo (0.37). Air quality mainly affected Cd (0.33) and Cr (0.37), traffic activity mainly affected Hg (0.31), and slope mainly affected Pb (0.31). The research results can be used to trace the environmental sources of soil heavy metals, fundamentally prevent and repair soil heavy metal pollution, and protect urban soil environmental quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助白小白采纳,获得10
刚刚
shuxi完成签到,获得积分10
1秒前
liuwei发布了新的文献求助10
1秒前
yxf完成签到,获得积分20
1秒前
2秒前
十一完成签到,获得积分10
2秒前
2秒前
穆萝完成签到,获得积分10
2秒前
Jenny应助Eva采纳,获得10
2秒前
bkagyin应助17808352679采纳,获得10
2秒前
俭朴夜雪发布了新的文献求助10
3秒前
3秒前
林上草应助123采纳,获得10
3秒前
科目三应助AoiNG采纳,获得10
3秒前
4秒前
orixero应助雪白涵山采纳,获得20
4秒前
123发布了新的文献求助10
5秒前
ajing完成签到,获得积分10
5秒前
537完成签到,获得积分10
5秒前
5秒前
6秒前
清醒的ZY完成签到,获得积分10
6秒前
yxf发布了新的文献求助10
7秒前
大个应助叫滚滚采纳,获得10
7秒前
7秒前
Rui发布了新的文献求助10
8秒前
8秒前
China发布了新的文献求助10
8秒前
8秒前
ryze完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
莉莉发布了新的文献求助10
10秒前
11秒前
11秒前
辣辣完成签到,获得积分10
11秒前
桐桐应助白华苍松采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762