Preparation of polymer composites with high thermal conductivity by constructing a “double thermal conductive network” via electrostatic spinning

材料科学 热导率 复合材料 氮化硼 复合数 纺纱 导电体 硅橡胶 碳纳米管
作者
Zirui Wang,Fan Li,Runlai Li,Yichen Xu,Qiang Fu
出处
期刊:Composites Communications [Elsevier]
卷期号:36: 101371-101371 被引量:43
标识
DOI:10.1016/j.coco.2022.101371
摘要

With the advancement of information technology, there is a boom of demand for high-performance thermal conductive polymer-based materials applied in microelectronic devices. Fillers with high thermal conductivity, such as boron nitride nanosheets (BNNS), are often incorporated to improve the comprehensive thermal conductivity of polymer matrix. However, the fillers dispersed in composites often fail to form continuous heat transfer pathways due to the occurrence of interfaces, resulting in a suppressed thermal conductivity. In this paper, BNNS was confined in carbon nanofibers by electrostatic spinning (e-spin). The resultant fibrous carbon-boron nitride hybrid skeleton was combined with silicone rubber to form an elastic composite film. The effects of BNNS contents on the hybrid skeleton morphology and the composite conductivity were rigorously resolved. It was found that the hybrid skeleton consisted of continuous long-stacked carbon fibers, with high thermal conductivity intrinsically. And BNNS was tightly stacked, confined, and oriented along the fibers. The maximum thermal conductivity of the composite film was 4.09 W m−1 K−1, about 16 times higher than that of pure PDMS. A double thermal conductive network mechanism was proposed. That is, the two thermal pathways were formed by the overlapped BNNS and the carbon fibers, respectively. And the optimal thermal conductivity was achieved as the two pathways composited together by spinning and carbonization. The composite films with vertical alignment of the hybrid fibers were also prepared. Our work provides an essential and innovative strategy for the preparation of high thermal conductivity composites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
123完成签到,获得积分20
刚刚
旺旺小胖发布了新的文献求助10
1秒前
1秒前
FashionBoy应助闪闪采纳,获得10
1秒前
1秒前
cL完成签到 ,获得积分10
1秒前
2秒前
清梦完成签到,获得积分10
2秒前
shanage应助光亮初兰采纳,获得10
2秒前
陈醒醒完成签到,获得积分10
3秒前
Antibody完成签到,获得积分10
3秒前
3秒前
美满的安柏完成签到,获得积分10
3秒前
3秒前
小半完成签到,获得积分10
3秒前
3秒前
Juzco发布了新的文献求助10
4秒前
yy完成签到 ,获得积分10
4秒前
Kessino发布了新的文献求助10
4秒前
yuta123发布了新的文献求助10
4秒前
nakl完成签到,获得积分10
5秒前
英姑应助struggling2026采纳,获得10
5秒前
欣慰的白羊完成签到,获得积分10
5秒前
5秒前
咦_发布了新的文献求助10
5秒前
dalian发布了新的文献求助10
5秒前
leey完成签到,获得积分10
5秒前
baozeNG发布了新的文献求助10
6秒前
6秒前
yilongyy应助CHESSE采纳,获得10
7秒前
7秒前
Droplet完成签到,获得积分10
7秒前
哈哈哈完成签到 ,获得积分10
8秒前
pbj完成签到,获得积分20
8秒前
易小名完成签到 ,获得积分10
8秒前
tuanzi完成签到,获得积分10
9秒前
husy完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115