A reverse chromatin immunoprecipitation technique based on the CRISPR–dCas9 system

染色质免疫沉淀 生物 染色质 免疫沉淀 DNA Cas9 清脆的 引导RNA 芯片排序 核糖核酸 细胞生物学 分子生物学 计算生物学 遗传学 基因 染色质重塑 基因表达 发起人
作者
Zhibo Wang,Zihang He,Zhujun Liu,Ming Qu,Caiqiu Gao,Chao Wang,Yucheng Wang
出处
期刊:Plant Physiology [Oxford University Press]
被引量:1
标识
DOI:10.1093/plphys/kiac506
摘要

Abstract DNA–protein interaction is one of the most crucial interactions in biological processes. However, the technologies available to study DNA–protein interactions are all based on DNA hybridization; however, DNA hybridization is not highly specific and is relatively low in efficiency. RNA-guided DNA recognition is highly specific and efficient. To overcome the limitations of technologies based on DNA hybridization, we built a DNA-binding protein capture technology based on the clustered regularly interspaced palindromic repeats (CRISPR)–dead Cas9 (dCas9) system and transient genetic transformation, termed reverse chromatin immunoprecipitation based on CRISPR–dCas9 system (R-ChIP–dCas9). In this system, dCas9 was fused with Strep-Tag II to form a fusion protein for StrepTactin affinity purification. Transient transformation was performed for the expression of dCas9 and guide RNA (gRNA) to form the dCas9–gRNA complex in birch (Betula platyphylla) plants, which binds to the target genomic DNA region. The dCas9–gRNA–DNA complex was crosslinked, then the chromatin was sonicated into fragments, and purified using StrepTactin beads. The proteins binding to the target genomic DNA region were identified using mass spectrometry. Using this method, we determined the upstream regulators of a NAM, ATAF, and CUC (NAC) transcription factor (TF), BpNAC090, and 32 TFs potentially regulating BpNAC090 were identified. The reliability of R-ChIP–dCas9 was further confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assays, and yeast one-hybrid. This technology can be adapted to various plant species and does not depend on the availability of a stable transformation system; therefore, it has wide application in identifying proteins bound to genomic DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助王某人采纳,获得10
1秒前
Han发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
4秒前
俗人应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
淡然元彤应助科研通管家采纳,获得200
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
2113完成签到,获得积分10
5秒前
5秒前
不配.应助Superg采纳,获得10
8秒前
情怀应助Superg采纳,获得10
8秒前
10秒前
橙子完成签到,获得积分10
10秒前
图治完成签到,获得积分10
11秒前
奋斗小公主完成签到,获得积分10
16秒前
16秒前
毛耳朵完成签到,获得积分10
18秒前
21秒前
天下无敌完成签到 ,获得积分10
22秒前
科研小迷糊完成签到,获得积分10
24秒前
陈嘻嘻嘻嘻完成签到,获得积分10
25秒前
wjh完成签到,获得积分10
25秒前
脑洞疼应助langzhiquan采纳,获得10
26秒前
葭月十七发布了新的文献求助10
27秒前
冷艳薯片完成签到,获得积分10
28秒前
LiChard完成签到 ,获得积分10
28秒前
CipherSage应助颜陌采纳,获得10
35秒前
沉静一刀完成签到 ,获得积分10
36秒前
小蘑菇应助卿云采纳,获得10
39秒前
39秒前
耶耶耶完成签到 ,获得积分10
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242492
求助须知:如何正确求助?哪些是违规求助? 2886874
关于积分的说明 8245034
捐赠科研通 2555371
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625554