亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-powered prostate cancer detection: a multi-centre, multi-scanner validation study

医学 前列腺癌 神经组阅片室 磁共振成像 放射科 前列腺 癌症 核医学 医学物理学 内科学 神经学 精神科
作者
Francesco Giganti,Nádia Moreira da Silva,Michael Yeung,Lucy Davies,Amy Frary,María Encarnación Tamayo Rodríguez,Nikita Sushentsev,Nicholas Ashley,Adrian Andreou,Alison Bradley,Chris Wilson,Giles Maskell,Giorgio Brembilla,Iztok Caglič,Jakub Suchánek,Jobie Budd,Zobair Arya,Jonathan Aning,John Hayes,Maria Grazia Di Bono
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00330-024-11323-0
摘要

Abstract Objectives Multi-centre, multi-vendor validation of artificial intelligence (AI) software to detect clinically significant prostate cancer (PCa) using multiparametric magnetic resonance imaging (MRI) is lacking. We compared a new AI solution, validated on a separate dataset from different UK hospitals, to the original multidisciplinary team (MDT)-supported radiologist’s interpretations. Materials and methods A Conformité Européenne (CE)-marked deep-learning (DL) computer-aided detection (CAD) medical device (Pi) was trained to detect Gleason Grade Group (GG) ≥ 2 cancer using retrospective data from the PROSTATEx dataset and five UK hospitals (793 patients). Our separate validation dataset was on six machines from two manufacturers across six sites (252 patients). Data included in the study were from MRI scans performed between August 2018 to October 2022. Patients with a negative MRI who did not undergo biopsy were assumed to be negative (90.4% had prostate-specific antigen density < 0.15 ng/mL 2 ). ROC analysis was used to compare radiologists who used a 5-category suspicion score. Results GG ≥ 2 prevalence in the validation set was 31%. Evaluated per patient, Pi was non-inferior to radiologists (considering a 10% performance difference as acceptable), with an area under the curve (AUC) of 0.91 vs. 0.95. At the predetermined risk threshold of 3.5, the AI software’s sensitivity was 95% and specificity 67%, while radiologists at Prostate Imaging-Reporting and Data Systems/Likert ≥ 3 identified GG ≥ 2 with a sensitivity of 99% and specificity of 73%. AI performed well per-site (AUC ≥ 0.83) at the patient-level independent of scanner age and field strength. Conclusion Real-world data testing suggests that Pi matches the performance of MDT-supported radiologists in GG ≥ 2 PCa detection and generalises to multiple sites, scanner vendors, and models. Key Points Question The performance of artificial intelligence-based medical tools for prostate MRI has yet to be evaluated on multi-centre, multi-vendor data to assess generalisability. Findings A dedicated AI medical tool matches the performance of multidisciplinary team-supported radiologists in prostate cancer detection and generalises to multiple sites and scanners. Clinical relevance This software has the potential to support the MRI process for biopsy decision-making and target identification, but future prospective studies, where lesions identified by artificial intelligence are biopsied separately, are needed. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
xiubo128完成签到 ,获得积分10
9秒前
10秒前
12秒前
Lucas应助蓝调芋泥采纳,获得10
17秒前
索谓完成签到 ,获得积分10
22秒前
40秒前
47秒前
shaylie完成签到 ,获得积分10
50秒前
简因完成签到 ,获得积分10
55秒前
cqbrain123完成签到,获得积分10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
blenx完成签到,获得积分10
1分钟前
1分钟前
李豆豆发布了新的文献求助10
1分钟前
Eatanicecube完成签到,获得积分10
1分钟前
兼听则明完成签到,获得积分10
1分钟前
李豆豆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
少侠爱文献完成签到,获得积分10
1分钟前
研友_VZG7GZ应助无趣采纳,获得10
2分钟前
2分钟前
蓝调芋泥发布了新的文献求助10
2分钟前
蓝调芋泥完成签到,获得积分20
2分钟前
白金之星完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助kai采纳,获得10
2分钟前
2分钟前
Leonard_Canon发布了新的文献求助10
2分钟前
雪楼风铃发布了新的文献求助10
2分钟前
大模型应助xx采纳,获得10
2分钟前
power完成签到,获得积分10
2分钟前
2分钟前
Cheny完成签到,获得积分20
2分钟前
雪楼风铃完成签到 ,获得积分10
2分钟前
kai发布了新的文献求助10
2分钟前
盆盆发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749893
求助须知:如何正确求助?哪些是违规求助? 3293171
关于积分的说明 10079926
捐赠科研通 3008499
什么是DOI,文献DOI怎么找? 1652247
邀请新用户注册赠送积分活动 787330
科研通“疑难数据库(出版商)”最低求助积分说明 752059