灵敏度(控制系统)
转矩脉动
多目标优化
分类
涟漪
控制理论(社会学)
优化设计
有限元法
遗传算法
扭矩
电机
工程类
计算机科学
数学优化
电子工程
电压
定子
数学
算法
结构工程
物理
机械工程
直接转矩控制
机器学习
人工智能
电气工程
控制(管理)
热力学
感应电动机
作者
Xu Wang,Ying Fan,Can Yang,Zhanchuan Wu,Christopher Lee
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2023-02-01
卷期号:72 (2): 1638-1648
标识
DOI:10.1109/tvt.2022.3207231
摘要
This paper proposes a multi-objective optimization framework for a radial-axial hybrid excitation machine (RAHEM) to provide higher average torque, better flux regulation ability and smaller torque ripple, which are applied to electric vehicles (EVs). The design variables related to multiple-objective are analyzed by sensitivity stratification. Non-dominated sorting genetic algorithm II (NSGA-II) based on response surface model (RSM) is adopted for the high sensitivity layer variable. The advantages are selected with the pareto optimal solutions (POS), while the low sensitivity layer variables are optimized by sensitivity ranking for single parameter scanning. The optimization function compares the two sensitive layers results to obtain the optimal design. Three-dimensional (3-D) finite element analysis (FEA) is used to compare the electromagnetic performance of initial and optimal designs. Finally, a prototype is manufactured to verify the effectiveness of the proposed framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI