材料科学
复合材料
弹性体
胶粘剂
热导率
微观结构
极限抗拉强度
数码产品
夹紧
液态金属
软机器人
柔性电子器件
纳米技术
机械工程
机器人
计算机科学
图层(电子)
化学
人工智能
物理化学
工程类
作者
Tyler A. Pozarycki,Dohgyu Hwang,Edward J. Barron,Brittan T. Wilcox,Ravi Tutika,Michael D. Bartlett
出处
期刊:Small
[Wiley]
日期:2022-09-13
卷期号:18 (41)
被引量:22
标识
DOI:10.1002/smll.202203700
摘要
Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m-2 . Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.
科研通智能强力驱动
Strongly Powered by AbleSci AI