已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning

风速 气象学 风力发电 环境科学 日循环 气候变化 温室气体 气候模式 算法 计算机科学 工程类 地理 地质学 海洋学 电气工程
作者
Shuang Yu,Robert Vautard
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:169: 112897-112897 被引量:13
标识
DOI:10.1016/j.rser.2022.112897
摘要

The estimation of hub-height wind speed is critical to a comprehensive wind resource assessment, particularly for the evaluation of future energy mix scenarios. However, gridded datasets of wind speeds are often limited to near-surface winds, especially when it comes to climate model projections, which is a real limitation for using climate models. This study develops a transfer method to calculate 100 m wind speed using three machine learning methods, including the Least Absolute Shrinkage Selector Operator, Random Forest (RF) and extreme Gradient Boost (XGBoost). Compared with the traditional algorithm, based on empirical formulae, the tested machine learning-based algorithms allow much more accurate estimates of 100 m wind speeds. RF and XGBoost have good performance on the hourly scale, and correct the major biases of the classical, simplified algorithms, especially in the diurnal cycle of hub-height wind speeds. RF appears to be the best algorithm when compared with the reanalysis data. In addition, the machine learning transfer model is applied to 19 regional climate projections. Results show that the 100 m wind speed has decreased in most of Europe during 1979–2019, which is consistent with the observed stilling of surface winds in recent years. This trend is projected to increase in the future, under an uncurbed greenhouse gas emission scenario, which indicates adverse effects for the development of wind power generation in Europe. The approach established in this study can be applied to obtain numerical climate model outputs accurately, which is critical to the estimation of the long-term changes of global renewable energy resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧谷波应助tmxx采纳,获得10
3秒前
在水一方应助点点采纳,获得10
4秒前
NEO完成签到 ,获得积分10
10秒前
冷静的访天完成签到 ,获得积分10
11秒前
陈补天完成签到 ,获得积分10
11秒前
果汁完成签到 ,获得积分10
14秒前
冷静的忆秋完成签到,获得积分10
18秒前
cureall完成签到 ,获得积分10
20秒前
奥特超曼完成签到,获得积分10
21秒前
小巧谷波应助米米采纳,获得10
23秒前
风清扬应助依依采纳,获得10
23秒前
gougoudy发布了新的文献求助10
26秒前
brotherpeng完成签到 ,获得积分10
26秒前
可冥完成签到 ,获得积分10
27秒前
传奇3应助欣喜的薯片采纳,获得10
35秒前
harri完成签到,获得积分10
36秒前
栗子味的茶完成签到 ,获得积分10
37秒前
transition完成签到,获得积分10
37秒前
38秒前
勇敢牛牛完成签到,获得积分10
38秒前
情怀应助gougoudy采纳,获得10
38秒前
39秒前
friend516完成签到 ,获得积分10
40秒前
天元神尊完成签到 ,获得积分10
40秒前
41秒前
hh完成签到 ,获得积分10
42秒前
42秒前
超级的千青完成签到 ,获得积分10
42秒前
duxy发布了新的文献求助10
43秒前
leehong发布了新的文献求助10
44秒前
辛勤长颈鹿完成签到 ,获得积分10
44秒前
李健应助midokaori采纳,获得10
44秒前
44秒前
47秒前
喵m完成签到 ,获得积分10
47秒前
科研通AI2S应助勇敢牛牛采纳,获得30
48秒前
陈晨完成签到,获得积分10
49秒前
喵m关注了科研通微信公众号
51秒前
所所应助duxy采纳,获得10
52秒前
53秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956940
求助须知:如何正确求助?哪些是违规求助? 3502979
关于积分的说明 11110880
捐赠科研通 3233958
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234