Modulation of resting-state functional connectivity in default mode network is associated with the long-term treatment outcome in major depressive disorder

默认模式网络 重性抑郁障碍 抗抑郁药 静息状态功能磁共振成像 哈姆德 心理学 评定量表 功能磁共振成像 萧条(经济学) 内科学 医学 精神科 神经科学 心情 发展心理学 焦虑 经济 宏观经济学
作者
Yumeng Ju,Mi Wang,Jin Liu,Bangshan Liu,Danfeng Yan,Xiaowen Lu,Jinrong Sun,Qiangli Dong,Liang Zhang,Hua Guo,Futao Zhao,Mei Liao,Li Zhang,Yan Zhang,Lingjiang Li
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:53 (13): 5963-5975 被引量:10
标识
DOI:10.1017/s0033291722002628
摘要

Treatment non-response and recurrence are the main sources of disease burden in major depressive disorder (MDD). However, little is known about its neurobiological mechanism concerning the brain network changes accompanying pharmacotherapy. The present study investigated the changes in the intrinsic brain networks during 6-month antidepressant treatment phase associated with the treatment response and recurrence in MDD.Resting-state functional magnetic resonance imaging was acquired from untreated patients with MDD and healthy controls at baseline. The patients' depressive symptoms were monitored by using the Hamilton Rating Scale for Depression (HAMD). After 6 months of antidepressant treatment, patients were re-scanned and followed up every 6 months over 2 years. Traditional statistical analysis as well as machine learning approaches were conducted to investigate the longitudinal changes in macro-scale resting-state functional network connectivity (rsFNC) strength and micro-scale resting-state functional connectivity (rsFC) associated with long-term treatment outcome in MDD.Repeated measures of the general linear model demonstrated a significant difference in the default mode network (DMN) rsFNC change before and after the 6-month antidepressant treatment between remitters and non-remitters. The difference in the rsFNC change over the 6-month antidepressant treatment between recurring and stable MDD was also specific to DMN. Machine learning analysis results revealed that only the DMN rsFC change successfully distinguished non-remitters from the remitters at 6 months and recurring from stable MDD during the 2-year follow-up.Our findings demonstrated that the intrinsic DMN connectivity could be a unique and important target for treatment and recurrence prevention in MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
tian完成签到,获得积分10
1秒前
1秒前
天天发布了新的文献求助10
1秒前
2秒前
2秒前
yc发布了新的文献求助10
2秒前
3秒前
实验好难应助浮生若梦采纳,获得10
3秒前
hyhy发布了新的文献求助10
3秒前
淡定硬币完成签到,获得积分10
4秒前
FLY发布了新的文献求助10
4秒前
我是老大应助加一点荒谬采纳,获得10
4秒前
哦豁发布了新的文献求助10
5秒前
豆包发布了新的文献求助10
6秒前
科目三应助木日采纳,获得10
6秒前
7秒前
赖皮蛇发布了新的文献求助10
8秒前
领导范儿应助jj采纳,获得10
9秒前
lonely完成签到,获得积分10
9秒前
咯咚发布了新的文献求助10
10秒前
10秒前
yzl完成签到 ,获得积分10
11秒前
bkagyin应助mol采纳,获得10
11秒前
Pursue。发布了新的文献求助10
12秒前
坚定平卉发布了新的文献求助10
12秒前
hyhy完成签到,获得积分10
13秒前
13秒前
隐形曼青应助ytx采纳,获得10
13秒前
JACK发布了新的文献求助30
13秒前
冷傲乐萱完成签到,获得积分10
13秒前
14秒前
ss发布了新的文献求助10
14秒前
15秒前
a1313发布了新的文献求助10
15秒前
酷酷夜阑发布了新的文献求助10
16秒前
jj完成签到,获得积分10
16秒前
善学以致用应助坚定平卉采纳,获得10
16秒前
清风完成签到,获得积分10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735334
求助须知:如何正确求助?哪些是违规求助? 3279318
关于积分的说明 10014051
捐赠科研通 2995959
什么是DOI,文献DOI怎么找? 1643767
邀请新用户注册赠送积分活动 781440
科研通“疑难数据库(出版商)”最低求助积分说明 749398