Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飘逸水云完成签到,获得积分20
1秒前
壮观惋庭完成签到,获得积分20
1秒前
猫好好发布了新的文献求助10
2秒前
2秒前
3秒前
糯米团子完成签到,获得积分10
3秒前
Jasper应助小王采纳,获得10
3秒前
3秒前
3秒前
Throb完成签到,获得积分10
3秒前
5秒前
5秒前
飘逸水云发布了新的文献求助10
5秒前
CCCzzq完成签到,获得积分10
5秒前
5秒前
shi完成签到,获得积分10
6秒前
乐乐应助哈哈同学采纳,获得10
6秒前
汉堡包应助大喇叭啦啦啦采纳,获得10
6秒前
MR发布了新的文献求助10
7秒前
李爱国应助zzh319采纳,获得10
7秒前
orixero应助a龙采纳,获得10
8秒前
8秒前
qzs发布了新的文献求助10
8秒前
烟花应助zedhumble采纳,获得10
8秒前
冷傲初夏发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
mtdxby发布了新的文献求助10
9秒前
9秒前
热心犀牛完成签到,获得积分10
9秒前
沧浪发布了新的文献求助10
9秒前
小孙完成签到,获得积分10
9秒前
认真的以松完成签到,获得积分10
10秒前
平安喜乐完成签到,获得积分10
10秒前
10秒前
10秒前
dawei完成签到,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919