Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屋檐伴星泽完成签到,获得积分20
刚刚
清晨的小鹿完成签到,获得积分10
1秒前
Avery发布了新的文献求助30
1秒前
Xiao完成签到,获得积分10
2秒前
义气的巨人完成签到,获得积分10
2秒前
2秒前
Xiaoxin_Ju完成签到,获得积分10
2秒前
彼黍离离发布了新的文献求助10
3秒前
Holybot完成签到,获得积分10
3秒前
木樨完成签到,获得积分10
4秒前
myth完成签到,获得积分10
4秒前
5秒前
白潇潇完成签到 ,获得积分10
6秒前
琳琳完成签到,获得积分10
6秒前
didi完成签到,获得积分10
7秒前
7秒前
路痴完成签到,获得积分10
8秒前
凯卮完成签到,获得积分10
8秒前
过时的诗桃关注了科研通微信公众号
9秒前
lee完成签到 ,获得积分10
10秒前
火星仙人掌完成签到 ,获得积分10
10秒前
吾侪完成签到,获得积分20
11秒前
神勇的天菱完成签到,获得积分10
11秒前
KOBE94FU完成签到,获得积分10
11秒前
M95发布了新的文献求助10
12秒前
刘奶奶的牛奶完成签到,获得积分10
12秒前
桥豆麻袋完成签到,获得积分10
12秒前
12秒前
ttkd11完成签到,获得积分10
12秒前
13秒前
pcr163应助CyrusSo524采纳,获得250
13秒前
xr完成签到 ,获得积分10
13秒前
彼黍离离完成签到 ,获得积分10
13秒前
yiyiyi完成签到,获得积分10
13秒前
乐乐乐乐乐乐应助Luo采纳,获得10
14秒前
14秒前
研友_VZG7GZ应助吾侪采纳,获得10
14秒前
vicky完成签到,获得积分10
14秒前
Johnlian完成签到 ,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478