Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
allshestar完成签到 ,获得积分0
1秒前
HZW发布了新的文献求助10
1秒前
田様应助初遇之时最暖采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
地理汪汪发布了新的文献求助10
4秒前
纳兰嫣然发布了新的文献求助10
4秒前
8秒前
xy发布了新的文献求助10
8秒前
8秒前
111发布了新的文献求助10
8秒前
11秒前
丘比特应助OD采纳,获得10
13秒前
14秒前
14秒前
一一发布了新的文献求助10
14秒前
15秒前
genius完成签到,获得积分20
16秒前
酸酸给风吹麦田的求助进行了留言
16秒前
樱花打落雨完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
16秒前
彗星入梦完成签到 ,获得积分10
17秒前
17秒前
科研通AI6应助俏皮的邴采纳,获得10
17秒前
18秒前
HMH0223发布了新的文献求助10
18秒前
汉堡包应助HZW采纳,获得10
18秒前
LL发布了新的文献求助10
18秒前
liuxy发布了新的文献求助10
19秒前
迅速茹嫣发布了新的文献求助10
19秒前
19秒前
19秒前
陶醉的青烟完成签到 ,获得积分10
19秒前
568923发布了新的文献求助10
20秒前
21秒前
Zzk完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
义气完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370