Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助wewtetret采纳,获得10
1秒前
大个应助小邓采纳,获得10
1秒前
2秒前
xueyuanli完成签到,获得积分10
3秒前
chen7完成签到,获得积分10
3秒前
fighting发布了新的文献求助10
3秒前
研途发布了新的文献求助10
3秒前
3秒前
咖啡完成签到,获得积分10
3秒前
李总督大人完成签到,获得积分20
4秒前
4秒前
车车完成签到,获得积分10
5秒前
赵纤完成签到,获得积分10
5秒前
zyyz完成签到,获得积分10
6秒前
6秒前
QiQi应助Andy采纳,获得30
6秒前
大模型应助ad采纳,获得10
6秒前
舒心明杰完成签到,获得积分10
7秒前
8秒前
Jimmybythebay发布了新的文献求助10
8秒前
HYD完成签到,获得积分20
9秒前
9秒前
10秒前
王端端完成签到,获得积分10
10秒前
敏感的鼠标完成签到 ,获得积分10
10秒前
wewtetret完成签到,获得积分10
11秒前
12秒前
时尚中二完成签到,获得积分10
12秒前
13秒前
脑洞疼应助星辰0817采纳,获得10
13秒前
13秒前
小冰棍完成签到,获得积分10
14秒前
Hello应助toxin37采纳,获得30
14秒前
CipherSage应助小绵羊采纳,获得10
14秒前
nandou发布了新的文献求助10
14秒前
小胡发布了新的文献求助20
15秒前
打打应助SANDY采纳,获得10
15秒前
香蕉觅云应助小羊咩咩采纳,获得10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177058
求助须知:如何正确求助?哪些是违规求助? 4365829
关于积分的说明 13593355
捐赠科研通 4215842
什么是DOI,文献DOI怎么找? 2312284
邀请新用户注册赠送积分活动 1311047
关于科研通互助平台的介绍 1259242