Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lazarus完成签到,获得积分10
刚刚
刚刚
欧小嘢完成签到,获得积分10
1秒前
1秒前
Akim应助润润轩轩采纳,获得10
1秒前
2秒前
2秒前
2秒前
淡淡大山完成签到,获得积分10
2秒前
NexusExplorer应助weihuang采纳,获得10
3秒前
柠檬泡芙完成签到,获得积分10
3秒前
renjh完成签到,获得积分10
3秒前
4秒前
103x发布了新的文献求助10
4秒前
91ge完成签到 ,获得积分10
4秒前
窦无剑发布了新的文献求助10
4秒前
minggalaxy007发布了新的文献求助10
4秒前
哈基米完成签到 ,获得积分10
4秒前
小罗黑的完成签到,获得积分10
4秒前
5秒前
lyl发布了新的文献求助10
5秒前
小布丁发布了新的文献求助10
5秒前
清爽逊完成签到,获得积分20
5秒前
Owen应助阿东c采纳,获得10
5秒前
蓝书签发布了新的文献求助10
5秒前
6秒前
Lwssss发布了新的文献求助10
6秒前
tana98906发布了新的文献求助10
6秒前
6秒前
6秒前
cs发布了新的文献求助10
6秒前
乐观的海发布了新的文献求助10
6秒前
7秒前
阿翼完成签到 ,获得积分10
7秒前
CodeCraft应助Wang采纳,获得10
7秒前
秋秋发布了新的文献求助10
7秒前
8秒前
清爽逊发布了新的文献求助30
8秒前
LL完成签到,获得积分20
9秒前
nsk发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401