Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach

电动汽车 汽车工程 燃料电池 能源管理 高效能源利用 能量(信号处理) 工程类 计算机科学 化学工程 电气工程 物理 功率(物理) 量子力学
作者
Jingda Wu,Jiankun Peng,Menglin Li,Yue Wu
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:310: 118499-118499 被引量:2
标识
DOI:10.1016/j.enconman.2024.118499
摘要

To enhance the energy efficiency of electrified vehicles (EVs), developing effective energy management strategies (EMS) for hybrid storage systems is essential. Predictive EMS (PEMS) that foresee future vehicle speeds have demonstrated substantial potential in boosting EMS performance. However, traditional PEMS models, employing a sequential approach of speed prediction followed by energy allocation, are hampered by cumulative errors. These errors from the initial speed predss this issue, this paper introduces a novel solution: the trainable integrated preiction negatively impact the efficiency of subsequent energy management. To addrediction and energy management strategy (TIP-EMS). Contrasting with conventional sequential PEMS, TIP-EMS features a dual-branch, integrated neural network, which is fully trainable. This network processes driving status inputs via attention layers, with one branch dedicated to energy management objectives using a reinforcement learning (RL) algorithm, and the other to vehicle speed prediction. Both branches are trained simultaneously, but post-training, only the RL branch is activated for energy management. Implemented with a soft actor-critic RL algorithm, TIP-EMS is applied to a fuel cell EV for optimized energy management. The validation involved training TIP-EMS using 27 driving profiles, which developed its prediction and energy management capabilities, followed by tests in untrained scenarios. The results show that TIP-EMS surpasses conventional sequential PEMS by up to 4.2% in scenarios where prediction accuracies are comparable, highlighting the efficacy of the trainable integrated mechanism. In addition, TIP-EMS exhibits superior energy conservation compared to non-predictive RL strategies. Lastly, TIP-EMS exhibits robustness to adjustments in the weight given to the prediction objective, further confirming its practical applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaomax完成签到 ,获得积分10
2秒前
熊雅完成签到,获得积分10
3秒前
lyu完成签到,获得积分10
3秒前
shenmeijing完成签到 ,获得积分10
8秒前
花样年华完成签到,获得积分10
10秒前
Xiaoyisheng完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
无幻完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
lanxinge完成签到 ,获得积分10
13秒前
ssk完成签到,获得积分10
14秒前
15秒前
Yina完成签到 ,获得积分10
15秒前
16秒前
无情丹秋发布了新的文献求助10
21秒前
23秒前
量子星尘发布了新的文献求助10
26秒前
Colo发布了新的文献求助10
28秒前
简爱完成签到 ,获得积分10
29秒前
30秒前
量子星尘发布了新的文献求助10
32秒前
小莫完成签到 ,获得积分10
36秒前
推土机爱学习完成签到 ,获得积分10
38秒前
拉长的诗蕊完成签到,获得积分10
39秒前
千玺的小粉丝儿完成签到,获得积分10
42秒前
从容的水壶完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
45秒前
达尔文1完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
54秒前
alice01987完成签到,获得积分10
55秒前
Jinyang完成签到 ,获得积分10
57秒前
达尔文完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
久旱逢甘霖完成签到 ,获得积分10
1分钟前
谢陈完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
NEPUJuly发布了新的文献求助10
1分钟前
jun完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856