人工智能
计算机科学
机器学习
分级(工程)
深度学习
监督学习
模式识别(心理学)
人工神经网络
土木工程
工程类
作者
Juan P. Domínguez-Morales,Lourdes Durán-López,Niccolò Marini,Saturnino Vicente-Díaz,A. Linares-Barranco,Manfredo Atzori,Henning Müller
标识
DOI:10.1016/j.media.2024.103191
摘要
Prostate cancer is the second most frequent cancer in men worldwide after lung cancer. Its diagnosis is based on the identification of the Gleason score that evaluates the abnormality of cells in glands through the analysis of the different Gleason patterns within tissue samples. The recent advancements in computational pathology, a domain aiming at developing algorithms to automatically analyze digitized histopathology images, lead to a large variety and availability of datasets and algorithms for Gleason grading and scoring. However, there is no clear consensus on which methods are best suited for each problem in relation to the characteristics of data and labels. This paper provides a systematic comparison on nine datasets with state-of-the-art training approaches for deep neural networks (including fully-supervised learning, weakly-supervised learning, semi-supervised learning, Additive-MIL, Attention-Based MIL, Dual-Stream MIL, TransMIL and CLAM) applied to Gleason grading and scoring tasks. The nine datasets are collected from pathology institutes and openly accessible repositories. The results show that the best methods for Gleason grading and Gleason scoring tasks are fully supervised learning and CLAM, respectively, guiding researchers to the best practice to adopt depending on the task to solve and the labels that are available.
科研通智能强力驱动
Strongly Powered by AbleSci AI