A systematic comparison of deep learning methods for Gleason grading and scoring

人工智能 计算机科学 机器学习 分级(工程) 深度学习 监督学习 模式识别(心理学) 人工神经网络 土木工程 工程类
作者
Juan P. Domínguez-Morales,Lourdes Durán-López,Niccolò Marini,Saturnino Vicente-Díaz,A. Linares-Barranco,Manfredo Atzori,Henning Müller
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103191-103191 被引量:3
标识
DOI:10.1016/j.media.2024.103191
摘要

Prostate cancer is the second most frequent cancer in men worldwide after lung cancer. Its diagnosis is based on the identification of the Gleason score that evaluates the abnormality of cells in glands through the analysis of the different Gleason patterns within tissue samples. The recent advancements in computational pathology, a domain aiming at developing algorithms to automatically analyze digitized histopathology images, lead to a large variety and availability of datasets and algorithms for Gleason grading and scoring. However, there is no clear consensus on which methods are best suited for each problem in relation to the characteristics of data and labels. This paper provides a systematic comparison on nine datasets with state-of-the-art training approaches for deep neural networks (including fully-supervised learning, weakly-supervised learning, semi-supervised learning, Additive-MIL, Attention-Based MIL, Dual-Stream MIL, TransMIL and CLAM) applied to Gleason grading and scoring tasks. The nine datasets are collected from pathology institutes and openly accessible repositories. The results show that the best methods for Gleason grading and Gleason scoring tasks are fully supervised learning and CLAM, respectively, guiding researchers to the best practice to adopt depending on the task to solve and the labels that are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奉年完成签到,获得积分10
1秒前
xjj发布了新的文献求助10
2秒前
周芷卉发布了新的文献求助10
2秒前
科研通AI2S应助刘锦采纳,获得10
2秒前
3秒前
4秒前
酷波er应助积极的千琴采纳,获得10
4秒前
小楼发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
等风完成签到,获得积分10
7秒前
问你有没有发挥完成签到,获得积分10
7秒前
7秒前
g_f发布了新的文献求助10
8秒前
我是老大应助xjj采纳,获得10
8秒前
8秒前
浮雨微清完成签到,获得积分10
8秒前
Mayday完成签到,获得积分10
9秒前
pan发布了新的文献求助10
10秒前
糟糕的家伙完成签到,获得积分10
10秒前
10秒前
天边一阵风完成签到,获得积分10
12秒前
学术小菜鸡完成签到,获得积分10
12秒前
Solarenergy发布了新的文献求助10
13秒前
单hx发布了新的文献求助10
13秒前
谢小胖发布了新的文献求助10
13秒前
炙热海云发布了新的文献求助10
15秒前
15秒前
星辰大海应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
guoguo应助科研通管家采纳,获得10
18秒前
只A不B应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Iven应助科研通管家采纳,获得10
18秒前
Zqqqqq应助科研通管家采纳,获得10
19秒前
guoguo应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340086
求助须知:如何正确求助?哪些是违规求助? 2968135
关于积分的说明 8632438
捐赠科研通 2647668
什么是DOI,文献DOI怎么找? 1449744
科研通“疑难数据库(出版商)”最低求助积分说明 671534
邀请新用户注册赠送积分活动 660503