亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Approach to Predict Recanalization First-Pass Effect following Mechanical Thrombectomy in Patients with Acute Ischemic Stroke

医学 接收机工作特性 曲线下面积 冲程(发动机) 闭塞 核医学 缺血性中风 曲线下面积 放射科 内科学 心脏病学 缺血 药代动力学 机械工程 工程类
作者
Haoyue Zhang,Jennifer Polson,Zichen Wang,Kambiz Nael,Neal Rao,William Speier,Corey Arnold
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:45 (8): 1044-1052 被引量:2
标识
DOI:10.3174/ajnr.a8272
摘要

BACKGROUND AND PURPOSE:

Following endovascular thrombectomy in patients with large-vessel occlusion stroke, successful recanalization from 1 attempt, known as the first-pass effect, has correlated favorably with long-term outcomes. Pretreatment imaging may contain information that can be used to predict the first-pass effect. Recently, applications of machine learning models have shown promising results in predicting recanalization outcomes, albeit requiring manual segmentation. In this study, we sought to construct completely automated methods using deep learning to predict the first-pass effect from pretreatment CT and MR imaging.

MATERIALS AND METHODS:

Our models were developed and evaluated using a cohort of 326 patients who underwent endovascular thrombectomy at UCLA Ronald Reagan Medical Center from 2014 to 2021. We designed a hybrid transformer model with nonlocal and cross-attention modules to predict the first-pass effect on MR imaging and CT series.

RESULTS:

The proposed method achieved a mean 0.8506 (SD, 0.0712) for cross-validation receiver operating characteristic area under the curve (ROC-AUC) on MR imaging and 0.8719 (SD, 0.0831) for cross-validation ROC-AUC on CT. When evaluated on the prospective test sets, our proposed model achieved a mean ROC-AUC of 0.7967 (SD, 0.0335) with a mean sensitivity of 0.7286 (SD, 0.1849) and specificity of 0.8462 (SD, 0.1216) for MR imaging and a mean ROC-AUC of 0.8051 (SD, 0.0377) with a mean sensitivity of 0.8615 (SD, 0.1131) and specificity 0.7500 (SD, 0.1054) for CT, respectively, representing the first classification of the first-pass effect from MR imaging alone and the first automated first-pass effect classification method in CT.

CONCLUSIONS:

Results illustrate that both nonperfusion MR imaging and CT from admission contain signals that can predict a successful first-pass effect following endovascular thrombectomy using our deep learning methods without requiring time-intensive manual segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈旧完成签到,获得积分10
1秒前
黄志伟完成签到,获得积分20
2秒前
欣欣子完成签到,获得积分10
5秒前
sunstar完成签到,获得积分10
8秒前
积极慕晴发布了新的文献求助10
11秒前
11秒前
yxl完成签到,获得积分10
12秒前
Emma发布了新的文献求助10
12秒前
可耐的盈完成签到,获得积分10
15秒前
16秒前
绿毛水怪完成签到,获得积分10
19秒前
guo完成签到 ,获得积分10
21秒前
22秒前
lsc完成签到,获得积分10
23秒前
24秒前
小fei完成签到,获得积分10
30秒前
JamesPei应助如意的沛萍采纳,获得10
36秒前
麻辣薯条完成签到,获得积分10
40秒前
Emma关注了科研通微信公众号
44秒前
时尚身影完成签到,获得积分10
45秒前
46秒前
leoduo完成签到,获得积分0
49秒前
SSY发布了新的文献求助10
51秒前
流苏2完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
toutou应助科研通管家采纳,获得10
58秒前
toutou应助科研通管家采纳,获得10
58秒前
帝国之花应助科研通管家采纳,获得10
58秒前
栗子完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
mjjmm发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
aidengu完成签到 ,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
aidengu发布了新的文献求助30
1分钟前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312