材料科学
光电探测器
异质结
紫外线
铁电性
压电
光电子学
联轴节(管道)
电介质
复合材料
作者
Hongbin Wang,Jiangang Ma,Yurui Han,Peng Li,Weizhen Liu,Bingsheng Li,Haiyang Xu,Yichun Liu
标识
DOI:10.1021/acsami.4c04747
摘要
Ferroelectric materials have aroused increasing interest in the field of self-powered ultraviolet (UV) photodetectors (PDs) for their switchable spontaneous polarization. However, the utilization of ferroelectric materials to modulate the built-in electric field and energy band at the junction interface has rarely been investigated. Herein, we design and fabricate self-powered solar-blind UV PDs based on a Ga2O3/ZnO:V heterojunction. The performance of the Ga2O3/ZnO:V PD is significantly enhanced through the reasonable coupling of ferroelectricity and piezoelectricity within the ZnO:V film. The device at 260 nm exhibits excellent photoelectric properties with high peak responsivity of 64.5 mA/W, a specific detectivity of 3.8 × 1010 Jones, and a rise/decay time of 1.9/45.2 μs, together with reproducibility and stability. Systematical energy band diagram analysis reveals that the excellent performance of Ga2O3/ZnO:V PD can be attributed to the driving forces arising from the addition of the depolarization field and piezoelectric field, which increases the intensity of built-in electric field and promotes the separation and transport of photogenerated carriers at the heterojunction interface. The findings of our research provide a novel avenue and valuable guidance for the design of high-performance self-powered photodetectors.
科研通智能强力驱动
Strongly Powered by AbleSci AI