Twenty-five years of research on resting-state fMRI of major depressive disorder: A bibliometric analysis of hotspots, nodes, bursts, and trends

静息状态功能磁共振成像 重性抑郁障碍 功能连接 数据科学 心理学 神经科学 计算机科学 认知
作者
Lin Fu,Mengjing Cai,Yao Zhao,Zhihui Zhang,Qian Qian,Hui Xue,Yayuan Chen,Zuhao Sun,Qiyu Zhao,Shaoying Wang,Chunyang Wang,Wenqin Wang,Yifan Jiang,Yuxuan Tian,Juanwei Ma,Wenbin Guo,Feng Liu
出处
期刊:Heliyon [Elsevier]
卷期号:10 (13): e33833-e33833
标识
DOI:10.1016/j.heliyon.2024.e33833
摘要

Major depressive disorder (MDD) is a debilitating mental health condition that poses significant risks and burdens. Resting-state functional magnetic resonance imaging (fMRI) has emerged as a promising tool in investigating the neural mechanisms underlying MDD. However, a comprehensive bibliometric analysis of resting-state fMRI in MDD is currently lacking. Here, we aimed to thoroughly explore the trends and frontiers of resting-state fMRI in MDD research. The relevant publications were retrieved from the Web of Science database for the period between 1998 and 2022, and the CiteSpace software was employed to identify the influence of authors, institutions, countries/regions, and the latest research trends. A total of 1501 publications met the search criteria, revealing a gradual increase in the number of annual publications over the years. China contributed the largest publication output, accounting for the highest percentage among all countries. Particularly, the University of Electronic Science and Technology of China, Capital Medical University, and Harvard Medical School were identified as key institutions that have made substantial contributions to this growth. Neuroimage, Biological Psychiatry, Journal of Affective Disorders, and Proceedings of the National Academy of Sciences of the United States of America are among the influential journals in the field of resting-state fMRI research in MDD. Burst keywords analysis suggest the emerging research frontiers in this field are characterized by prominent keywords such as dynamic functional connectivity, cognitive control network, transcranial brain stimulation, and childhood trauma. Overall, our study provides a systematic overview into the historical development, current status, and future trends of resting-state fMRI in MDD, thus offering a useful guide for researchers to plan their future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Will发布了新的文献求助10
刚刚
悦耳的乐松完成签到,获得积分10
1秒前
香蕉觅云应助yuan采纳,获得10
1秒前
huhuiya完成签到 ,获得积分10
1秒前
2秒前
夏秀鑫应助阿泽采纳,获得30
2秒前
yy发布了新的文献求助10
3秒前
PXY完成签到,获得积分10
3秒前
叶落天涯完成签到 ,获得积分10
4秒前
4秒前
是问完成签到,获得积分10
4秒前
cissie完成签到 ,获得积分10
4秒前
风中冷风完成签到,获得积分10
5秒前
denty发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
柳觅夏完成签到,获得积分10
6秒前
1eegl发布了新的文献求助10
7秒前
堪曼凝完成签到,获得积分10
7秒前
田様应助大胆的映阳采纳,获得10
7秒前
nuaa_shy应助周于琳采纳,获得10
8秒前
Nothing1024完成签到,获得积分10
8秒前
Komorebi完成签到,获得积分0
8秒前
木木发布了新的文献求助10
8秒前
徐慕源完成签到,获得积分10
8秒前
caixiaobinger完成签到 ,获得积分10
8秒前
9秒前
wanci应助元谷雪采纳,获得10
9秒前
葡萄完成签到,获得积分10
9秒前
10秒前
10秒前
liang发布了新的文献求助10
10秒前
sxp1031发布了新的文献求助10
10秒前
10秒前
认真的雪完成签到,获得积分10
11秒前
ming完成签到,获得积分10
11秒前
爆米花应助一阳采纳,获得10
11秒前
长鸢故里完成签到 ,获得积分10
11秒前
SciGPT应助sammy66采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699035
求助须知:如何正确求助?哪些是违规求助? 5128682
关于积分的说明 15224205
捐赠科研通 4854021
什么是DOI,文献DOI怎么找? 2604437
邀请新用户注册赠送积分活动 1555924
关于科研通互助平台的介绍 1514247