Analysis of Energy Efficient Workflow Allocation in Cloud Computing

云计算 计算机科学 工作流程 供应 分布式计算 工作流管理系统 调度(生产过程) 工作流技术 大数据 云测试 数据库 云安全计算 操作系统 工程类 运营管理
作者
Md Mazhar Nezami,Anoop Kumar,Mohammad Shahid,Md Manzar Nezami
标识
DOI:10.1109/csnt57126.2023.10134644
摘要

Growing demand for high performance computing such as cloud since exponential increase data and computing complexity. Cloud provides elastic and on-demand provisioning of high performance computing capabilities using a pay-per-use paradigm, which over the past few years has seen a rapid increase in its usage by scientists and engineers. Many applications consist of many cooperating tasks requiring more processing power than a single computer can provide. Scientific workflows, big data processing workflows and multitier web service workflows are known to be the examples of these applications. Workflow scheduling is an actively researched area in the IaaS cloud environment. Such applications are a big problem that require attention since they required high performance computing and consume excessive amount of energy in cloud data centers. Massive energy use in cloud data centers has an adverse effect on the environment and raises operational costs. As a result, it cannot be ignored. While satisfying the Quality-of-Service constraints set by the user, effective scheduling techniques can considerably reduce energy consumption. Due to the NP-hard nature of the problem, researchers have spent a lot of time studying cloud workflow scheduling. In this study, we offer an overview of existing research for workflow scheduling algorithm in the cloud environments. It provides a perceptive of heuristic and meta heuristic approaches used to solve workflow scheduling. This excerpt is from a full-text study that conducts a thorough analysis of the literature on workflow application in relation to cloud computing. By responding to the three research questions, initial findings are given. 96 research papers were reviewed, and 24 articles were chosen. This study explores that there is a need to find an energy efficient workflow allocation strategy while complying Quality-of-Service parameters set by the user.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小武完成签到 ,获得积分10
1秒前
Lee发布了新的文献求助10
1秒前
皮托发布了新的文献求助10
1秒前
Nora发布了新的文献求助50
1秒前
RR发布了新的文献求助10
2秒前
干净的早晨完成签到,获得积分10
2秒前
3秒前
H1998完成签到,获得积分10
3秒前
3秒前
bkagyin应助小李采纳,获得10
4秒前
852应助对映体采纳,获得10
4秒前
南兮发布了新的文献求助10
5秒前
5秒前
情怀应助科研小白采纳,获得10
5秒前
5秒前
6秒前
Hellodude发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
艾小晞发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
Judy完成签到 ,获得积分10
9秒前
维尼发布了新的文献求助10
9秒前
9秒前
9秒前
尹绿蓉完成签到,获得积分10
11秒前
张小枚发布了新的文献求助10
11秒前
YuGe发布了新的文献求助10
12秒前
Jasper应助superspace采纳,获得10
12秒前
Lucas应助嘿嘿嘿采纳,获得10
13秒前
13秒前
完美世界应助罗拉采纳,获得10
13秒前
浮游应助无心采纳,获得10
13秒前
XJP发布了新的文献求助10
13秒前
林黛玉完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194106
求助须知:如何正确求助?哪些是违规求助? 4376448
关于积分的说明 13629417
捐赠科研通 4231351
什么是DOI,文献DOI怎么找? 2320965
邀请新用户注册赠送积分活动 1319192
关于科研通互助平台的介绍 1269564