Graph Neural Network for spatiotemporal data: methods and applications

计算机科学 数据科学 分类 领域(数学分析) 大数据 图形 数据挖掘 机器学习 人工智能 理论计算机科学 数学 数学分析
作者
Yun Li,Dazhou Yu,Zhenke Liu,Minxing Zhang,Xiaoyun Gong,Liang Zhao
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2306.00012
摘要

In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的寄翠完成签到,获得积分10
1秒前
3秒前
Jerry发布了新的文献求助10
4秒前
难过酸奶完成签到,获得积分10
4秒前
illusion完成签到,获得积分10
5秒前
科研通AI2S应助jinyu采纳,获得10
5秒前
6秒前
英姑应助无限的寄真采纳,获得10
8秒前
852应助荆棘鸟采纳,获得10
9秒前
9秒前
LPVV发布了新的文献求助10
10秒前
难过酸奶发布了新的文献求助10
10秒前
Mian完成签到,获得积分10
10秒前
卡布达完成签到,获得积分10
10秒前
11秒前
油菜花完成签到,获得积分10
11秒前
11秒前
yin发布了新的文献求助10
12秒前
Guguking完成签到,获得积分10
13秒前
大胆笑翠应助大田采纳,获得10
14秒前
hbc发布了新的文献求助10
15秒前
花鸟风月evereo完成签到,获得积分10
15秒前
15秒前
风中小刺猬完成签到,获得积分10
15秒前
15秒前
ㄣ兲天幵鈊ゞ完成签到,获得积分10
16秒前
16秒前
17秒前
陈七七完成签到 ,获得积分10
17秒前
17秒前
wsh完成签到,获得积分10
17秒前
动听乐珍发布了新的文献求助10
18秒前
乐观问梅完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
周末完成签到,获得积分20
20秒前
安静的芝麻应助朱莉采纳,获得10
20秒前
21秒前
简单灵凡发布了新的文献求助10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246076
求助须知:如何正确求助?哪些是违规求助? 2889679
关于积分的说明 8259727
捐赠科研通 2558094
什么是DOI,文献DOI怎么找? 1387004
科研通“疑难数据库(出版商)”最低求助积分说明 650362
邀请新用户注册赠送积分活动 626793