A novel denoising method for low-dose CT images based on transformer and CNN

计算机科学 人工智能 卷积神经网络 降噪 图像质量 模式识别(心理学) 医学影像学 特征(语言学) 计算机视觉 图像(数学) 语言学 哲学
作者
Zhang Ju,Zhibo Shangguan,Weiwei Gong,Yun Cheng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107162-107162 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.107162
摘要

Computed Tomography (CT) has become a mainstream imaging tool in medical diagnosis. However, the issue of increased cancer risk due to radiation exposure has raised public concern. Low-dose computed tomography (LDCT) technique is a CT scan with lower radiation dose than conventional scans. LDCT is used to make a diagnosis of lesions with the smallest dose of x-rays, and is currently mainly used for early lung cancer screening. However, LDCT has severe image noise, and these noises affect adversely the quality of medical images and thus the diagnosis of lesions. In this paper, we propose a novel LDCT image denoising method based on transformer combined with convolutional neural network (CNN). The encoder part of the network is based on CNN, which is mainly used to extract the image detail information. In the decoder part, we propose a dual-path transformer block (DPTB), which extracts the features of input of the skip connection and the features of input of the previous level through two paths respectively. DPTB can better restore the detail and structure information of the denoised image. In order to pay more attention to the key regions of the feature images extracted at the shallow level of the network, we also propose a multi-feature spatial attention block (MSAB) in the skip connection part. Experimental studies are conducted, and comparisons with the state-of-the-art networks are made, and the results demonstrate that the developed method can effectively remove the noise in CT images and improve the image quality in the evaluation metrics of peak signal to noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) and is superior to the state-of-the-art models. Our method achieved 28.9720 of PSNR, 0.8595 of SSIM and 14.8657 of RMSE on the Mayo Clinic LDCT Grand Challenge dataset. For different noise level σ (15, 35, and 55) on the QIN_LUNG_CT dataset, our proposed also achieved better performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助meikoo采纳,获得10
刚刚
天空发布了新的文献求助10
刚刚
万默完成签到 ,获得积分10
刚刚
小小叶完成签到,获得积分10
1秒前
xiaohhh完成签到,获得积分20
1秒前
1秒前
1秒前
Aloha发布了新的文献求助10
2秒前
韩倩完成签到 ,获得积分10
2秒前
2秒前
拉长的店员完成签到,获得积分10
2秒前
小小叶发布了新的文献求助10
3秒前
天桂星发布了新的文献求助20
3秒前
聪明灵阳应助一方通行采纳,获得30
4秒前
4秒前
踏实语蓉发布了新的文献求助10
4秒前
一一应助whitexue采纳,获得10
5秒前
平常铅笔完成签到,获得积分10
5秒前
斯文败类应助暗夜男采纳,获得10
6秒前
6秒前
樂酉发布了新的文献求助20
6秒前
晚风关注了科研通微信公众号
6秒前
橘子发布了新的文献求助50
6秒前
科研通AI2S应助痴情的寒云采纳,获得10
7秒前
aaaaaa发布了新的文献求助10
7秒前
7秒前
一一应助白金采纳,获得10
7秒前
奋斗绿旋发布了新的文献求助10
7秒前
苗条凌瑶完成签到,获得积分10
8秒前
韩倩发布了新的文献求助10
8秒前
8秒前
调研昵称发布了新的文献求助10
8秒前
8秒前
8秒前
科研仔完成签到,获得积分20
10秒前
科研通AI5应助wq采纳,获得10
11秒前
11秒前
王佳慧完成签到 ,获得积分10
12秒前
yao发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379