Trust-aware Multi-task Knowledge Graph for Recommendation

计算机科学 知识图 图形 推荐系统 嵌入 理论计算机科学 数据挖掘 机器学习 情报检索 人工智能
作者
Yan Zhou,Jie Guo,Bin Song,Chen Chen,Chang Jin-yi,F. Richard Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tkde.2022.3221160
摘要

Data sparsity and cold start problems are common in recommender systems. Adding some side information, such as knowledge graph and users' trust relationship, is an effective method to alleviate these problems. However, few work jointly explore the fine-grained implicit relationships between the external heterogeneous graphs to enhance the recommendation accuracy. To address this issue, in this paper, we propose a new method named Trust-aware Multi-task Knowledge Graph (TMKG), which uses multi-task learning to integrate two kinds of side information of trust graph and knowledge graph in an end-to-end manner. Firstly, we mine the intra-graph and inter-graph high-order connections through the node propagation and aggregation, and optimize the embedding of nodes through the implicit relationships obtained. Furthermore, through the shared cross unit, the connection relationships between each layer is mined, and the high-order interaction of nodes of different layers is obtained. We conduct extensive experiments on real-world datasets and prove that our model has the superior performance compared with the state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛儿豆儿完成签到,获得积分10
1秒前
zsxml完成签到,获得积分10
1秒前
Aling完成签到,获得积分20
1秒前
CodeCraft应助噜啦噜啦采纳,获得10
2秒前
kkkk完成签到,获得积分10
2秒前
2秒前
情怀应助干净的夏天采纳,获得10
3秒前
早睡早起完成签到,获得积分10
4秒前
4秒前
4秒前
7秒前
bofu发布了新的文献求助10
7秒前
cstp完成签到,获得积分10
8秒前
8秒前
8秒前
就爱吃土豆完成签到,获得积分0
9秒前
宇婷发布了新的文献求助10
9秒前
毛毛毛毛小毛完成签到,获得积分10
9秒前
天天快乐应助Jason采纳,获得10
10秒前
11秒前
serendipity发布了新的文献求助10
12秒前
bofu发布了新的文献求助10
14秒前
14秒前
ding应助淡淡夕阳采纳,获得10
15秒前
15秒前
15秒前
华仔应助nimonimo采纳,获得10
15秒前
15秒前
15秒前
iroko完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
宇婷完成签到,获得积分10
18秒前
Yesitong发布了新的文献求助10
19秒前
bofu发布了新的文献求助10
19秒前
后山种仙草完成签到,获得积分10
19秒前
20秒前
x菜鸡博士应助serendipity采纳,获得10
20秒前
星辰大海应助cstp采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105