Open-Loop Naturalistic Driving: An Assessment of Human Behavior, Performance, and Physiology to Support the Development of Shared Control Strategies

障碍物 导线 计算机科学 自然主义观察 控制(管理) 判断 模拟 人工智能 心理学 社会心理学 大地测量学 政治学 法学 地理
作者
Maya S. Luster,Brandon J. Pitts
出处
期刊:Proceedings of the Human Factors and Ergonomics Society ... Annual Meeting [SAGE]
卷期号:66 (1): 1690-1694 被引量:1
标识
DOI:10.1177/1071181322661253
摘要

Advanced systems that require shared control are becoming increasingly pervasive. One advantage of a shared control approach is that the human and machine work together to accomplish safe operations. However, data about the human is needed to implement successful strategies. The goal of this study was to quantify naturalistic driving by collecting performance and physiological data during manual, open-loop driving. Sixteen participants performed a single drive that included four sudden obstacles of increasing difficulty (road debris, construction, inclement weather, and an animal). Participants were asked to traverse each obstacle using self-employed judgement and strategies. Action selection, lane deviation, speed, and heart rate data were recorded. Results showed two distinct driving strategies for avoiding the moving obstacle/animal (left vs. right lane navigation). Also, maximum speed was affected by obstacle type, but heart rate variability was not. Results can be used to inform shared control algorithms designed to combat poor driving performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻芷完成签到,获得积分10
1秒前
编程浪子dk关注了科研通微信公众号
2秒前
不思进取完成签到 ,获得积分10
2秒前
3秒前
HEIKU应助程宇采纳,获得10
4秒前
香蕉觅云应助程宇采纳,获得10
4秒前
英姑应助程宇采纳,获得10
4秒前
科研通AI2S应助程宇采纳,获得30
4秒前
wanci应助程宇采纳,获得10
4秒前
SciGPT应助程宇采纳,获得10
4秒前
想把太阳揣兜里应助程宇采纳,获得10
4秒前
香蕉觅云应助程宇采纳,获得30
4秒前
可爱的函函应助程宇采纳,获得10
4秒前
想把太阳揣兜里应助程宇采纳,获得10
4秒前
眼睛大的妙之完成签到,获得积分20
4秒前
Flying016发布了新的文献求助10
4秒前
Juvenilesy发布了新的文献求助50
4秒前
5秒前
寂寞的眼神完成签到,获得积分10
5秒前
科研通AI5应助清流采纳,获得10
5秒前
kiwi发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
9秒前
Taro完成签到 ,获得积分10
10秒前
充电宝应助一把过采纳,获得10
10秒前
10秒前
图图应助程宇采纳,获得30
11秒前
立刻有完成签到 ,获得积分10
11秒前
星辰大海应助程宇采纳,获得10
11秒前
迟大猫应助程宇采纳,获得10
11秒前
HEIKU应助程宇采纳,获得10
11秒前
情怀应助程宇采纳,获得10
11秒前
草帽发布了新的文献求助10
11秒前
脑洞疼应助程宇采纳,获得30
11秒前
wxqz应助程宇采纳,获得10
11秒前
SciGPT应助程宇采纳,获得10
12秒前
汉堡包应助程宇采纳,获得10
12秒前
英姑应助程宇采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735334
求助须知:如何正确求助?哪些是违规求助? 3279318
关于积分的说明 10014051
捐赠科研通 2995959
什么是DOI,文献DOI怎么找? 1643767
邀请新用户注册赠送积分活动 781440
科研通“疑难数据库(出版商)”最低求助积分说明 749398