DeepTriNet: A Tri-Level Attention-Based DeepLabv3+ Architecture for Semantic Segmentation of Satellite Images

计算机科学 人工智能 建筑 分割 卫星 计算机视觉 遥感 地质学 地理 工程类 航空航天工程 考古
作者
Tareque Bashar Ovi,Shakil Mosharrof,Nomaiya Bashree,Muhammad Nazrul Islam,Md Shofiqul Islam
出处
期刊:Smart innovation, systems and technologies 卷期号:: 373-384 被引量:6
标识
DOI:10.1007/978-981-99-7711-6_30
摘要

The segmentation of satellite images is crucial in remote sensing applications. Existing methods face challenges in recognizing small-scale objects in satellite images for semantic segmentation primarily due to ignoring the low-level characteristics of the underlying network and due to containing distinct amounts of information by different feature maps. Thus, in this research, a tri-level attention-based DeepLabv3+ architecture (DeepTriNet) is proposed for the semantic segmentation of satellite images. The proposed hybrid method combines Squeeze-and-Excitation Networks (SENets) and Tri-Level Attention Units (TAUs) with the vanilla DeepLabv3+ architecture, where the TAUs are used to bridge the semantic feature gap among encoders output and the SENets used to put more weight on relevant features. The proposed DeepTriNet finds which features are the more relevant and more generalized way by its self-supervision rather we annotate them. The study showed that the proposed DeepTriNet performs better than many conventional techniques with an accuracy of 98 and 77, IoU 80 and 58%, precision of 87 and 68%, and recall of 79 and 55% on the 4-class Land-Cover.ai dataset and the 15-class GID-2 dataset, respectively. The proposed method will greatly contribute to natural resource management and change detection in rural and urban regions through efficient and semantic satellite image segmentation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得10
刚刚
1秒前
Genius完成签到,获得积分10
1秒前
1秒前
Able应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
小可爱521应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
1秒前
Hello应助秋雨采纳,获得10
2秒前
2秒前
阿绿发布了新的文献求助10
2秒前
科研通AI2S应助欢呼的丁真采纳,获得10
4秒前
4秒前
4秒前
不知江月待何人完成签到,获得积分20
5秒前
5秒前
NingSun发布了新的文献求助20
6秒前
嚯嚯嚯嚯发布了新的文献求助10
6秒前
6秒前
人生如梦应助H2CO3采纳,获得10
7秒前
8秒前
Akim应助yaoyao采纳,获得10
8秒前
纯真的觅露应助silver_lin采纳,获得10
9秒前
能干发夹完成签到,获得积分10
9秒前
张雷应助容荣采纳,获得20
10秒前
时尚的八宝粥完成签到,获得积分10
10秒前
11秒前
moumou发布了新的文献求助10
11秒前
能干发夹发布了新的文献求助10
13秒前
欧阳正义发布了新的文献求助10
13秒前
萧水白应助WTaMi采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498