Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in skin cutaneous melanoma

签名(拓扑) 免疫疗法 医学 肿瘤科 内科学 黑色素瘤 肿瘤异质性 癌症 皮肤病科 癌症研究 数学 几何学
作者
Wei Zhang,Shuai Wang
出处
期刊:Melanoma Research [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/cmr.0000000000000957
摘要

Background Intratumor heterogeneity (ITH) is defined as differences in molecular and phenotypic profiles between different tumor cells and immune cells within a tumor. ITH was involved in the cancer progression, aggressiveness, therapy resistance and cancer recurrence. Methods Integrative machine learning procedure including 10 methods was conducted to develop an ITH-related signature (IRS) in The Cancer Genome Atlas (TCGA), GSE54467, GSE59455 and GSE65904 cohort. Several scores, including tumor immune dysfunction and exclusion (TIDE) score, tumor mutation burden (TMB) score and immunophenoscore (IPS), were used to evaluate the role of IRS in predicting immunotherapy benefits. Two immunotherapy datasets (GSE91061 and GSE78220) were utilized to the role of IRS in predicting immunotherapy benefits of skin cutaneous melanoma (SKCM) patients. Results The optimal prognostic IRS constructed by Lasso method acted as an independent risk factor and had a stable and powerful performance in predicting the overall survival rate in SKCM, with the area under the curve of 2-, 3- and 4-year receiver operating characteristic curve being 0.722, 0.722 and 0.737 in TCGA cohort. We also constructed a nomogram and the actual 1-, 3- and 5-year survival times were highly consistent with the predicted survival times. SKCM patients with low IRS scores had a lower TIDE score, lower immune escape score and higher TMB score, higher PD1&CTLA4 IPS. Moreover, SKCM patients with low IRS scores had a lower gene sets score involved in DNA repair, angiogenesis, glycolysis, hypoxia, IL2-STAT5 signaling, MTORC1 signaling, NOTCH signaling and P53 pathway. Conclusion The current study constructed a novel IRS in SKCM using 10 machine learning methods. This IRS acted as an indicator for predicting the prognosis and immunotherapy benefits of SKCM patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Res_M采纳,获得10
2秒前
希望天下0贩的0应助opcy采纳,获得30
2秒前
搜集达人应助心灵美凝竹采纳,获得10
2秒前
ysm完成签到 ,获得积分10
2秒前
NexusExplorer应助正直的雁菡采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
赘婿应助Jy采纳,获得10
6秒前
7秒前
8秒前
义气严青完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
12秒前
英俊的铭应助优美匕采纳,获得10
12秒前
13秒前
13秒前
111发布了新的文献求助10
13秒前
谨慎师完成签到 ,获得积分10
17秒前
17秒前
17秒前
you发布了新的文献求助10
18秒前
小冲完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
琉璃色孔雀完成签到,获得积分10
20秒前
田様应助负责的珩采纳,获得10
21秒前
Jy发布了新的文献求助10
22秒前
冰冰完成签到,获得积分10
23秒前
太平洋的骇浪完成签到,获得积分10
23秒前
24秒前
大巧不工发布了新的文献求助10
25秒前
大个应助清喻采纳,获得10
26秒前
健忘泽洋完成签到,获得积分10
26秒前
ee关闭了ee文献求助
27秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
一蓑烟雨任平生应助理li采纳,获得10
30秒前
量子星尘发布了新的文献求助10
33秒前
负责的珩发布了新的文献求助10
33秒前
充电宝应助雨竹采纳,获得10
34秒前
共享精神应助daltonz采纳,获得10
34秒前
喜悦的水云完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664493
求助须知:如何正确求助?哪些是违规求助? 3224499
关于积分的说明 9757818
捐赠科研通 2934401
什么是DOI,文献DOI怎么找? 1606848
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012