Particle guided metaheuristic algorithm for global optimization and feature selection problems

元启发式 特征选择 计算机科学 并行元启发式 特征(语言学) 数学优化 选择(遗传算法) 粒子群优化 算法 多群优化 全局优化 人工智能 元优化 数学 语言学 哲学
作者
Benjamin Danso Kwakye,Yongjun Li,Halima Habuba Mohamed,Evans Baidoo,Theophilus Quachie Asenso
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123362-123362 被引量:34
标识
DOI:10.1016/j.eswa.2024.123362
摘要

Optimization problems can be seen in numerous fields of practical studies. One area making waves in the application of optimization methods is data mining in machine learning. An important preprocessing technique of data mining where irrelevant variables are discarded from the datasets and holding onto variables with important information is referred to as feature selection (FS). FS is critical to tackling the ‘curse of dimensionality’ by reducing the number of features, minimizing computational expensiveness and maximizing the accuracy of the machine learning models. Swarm Intelligence (SI)-based meta-heuristic algorithms (MAs) have been widely employed to solve several optimization problems like FS. However, common drawbacks identified with these algorithms include getting trapped in local optima, especially in situations where the search space is large (high dimensional space). This study proposes a new hybrid SI-based MA called Particle Swarm-guided Bald Eagle Search (PS-BES). The algorithm utilizes the speed of Particle Swarm to guide Bald Eagles in their search to ensure a smooth transition of the algorithm from exploration to exploitation. Additionally, we introduce the Attack-Retreat-Surrender technique, a new local-optima escape technique to enhance the balance between diversification and intensification of PS-BES. To establish the outstanding performance of the proposed algorithm, PS-BES is comprehensively analyzed utilizing 26 Benchmark functions. Further, the practicality of PS-BES is highlighted by its binary version for feature selection and evaluated using 27 classification datasets from the UCI repository. The results prove the overall superiority of PS-BES and bPS-BES as opposed the 10 state-of-the-art algorithms employed in the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发个15分的完成签到 ,获得积分10
刚刚
1秒前
沿途东行完成签到 ,获得积分10
1秒前
桥豆麻袋完成签到,获得积分10
2秒前
BK_201完成签到,获得积分10
2秒前
abiorz完成签到,获得积分10
3秒前
xueshidaheng完成签到,获得积分0
3秒前
窗外是蔚蓝色完成签到,获得积分10
4秒前
Disguise完成签到,获得积分10
4秒前
风信子完成签到,获得积分10
6秒前
Helios完成签到,获得积分10
6秒前
Ccccn完成签到,获得积分10
7秒前
8R60d8应助王w采纳,获得10
8秒前
吐司炸弹完成签到,获得积分10
9秒前
mayfly完成签到,获得积分10
9秒前
chenkj完成签到,获得积分10
9秒前
ikun完成签到,获得积分10
9秒前
EricSai完成签到,获得积分10
9秒前
鹏举瞰冷雨完成签到,获得积分10
10秒前
Brief完成签到,获得积分10
10秒前
nanostu完成签到,获得积分10
10秒前
cdercder应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
12秒前
SYLH应助科研通管家采纳,获得15
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
儒雅的若翠完成签到,获得积分10
13秒前
白子双完成签到,获得积分10
14秒前
你是我的唯一完成签到 ,获得积分10
15秒前
Chloe完成签到 ,获得积分0
16秒前
紫罗兰花海完成签到 ,获得积分10
18秒前
玉鱼儿完成签到 ,获得积分10
21秒前
25秒前
cdercder应助胖宏采纳,获得10
25秒前
烟沙完成签到 ,获得积分10
27秒前
一只小鲨鱼完成签到,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736728
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020304
捐赠科研通 2997406
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656