TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning

计算机科学 架空(工程) 背景(考古学) 推论 人工智能 加密 方案(数学) 信息隐私 机器学习 理论计算机科学 计算机安全 数学 程序设计语言 古生物学 数学分析 生物
作者
Runhua Xu,Bo Li,Chao Li,James Joshi,Shuai Ma,Tyler Zhou,Jin Song Dong,Jianxin Li
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 4309-4323
标识
DOI:10.1109/tdsc.2024.3350206
摘要

Federated learning is a computing paradigm that enhances privacy by enabling multiple parties to collaboratively train a machine learning model without revealing personal data. However, current research indicates that traditional federated learning platforms are unable to ensure privacy due to privacy leaks caused by the interchange of gradients. To achieve privacy-preserving federated learning, integrating secure aggregation mechanisms is essential. Unfortunately, existing solutions are vulnerable to recently demonstrated inference attacks such as the disaggregation attack. This paper proposes TAPFed , an approach for achieving privacy-preserving federated learning in the context of multiple decentralized aggregators with malicious actors. TAPFed uses a proposed threshold functional encryption scheme and allows for a certain number of malicious aggregators while maintaining security and privacy. We provide formal security and privacy analyses of TAPFed and compare it to various baselines through experimental evaluation. Our results show that TAPFed offers equivalent performance in terms of model quality compared to state-of-the-art approaches while reducing transmission overhead by 29%-45% across different model training scenarios. Most importantly, TAPFed can defend against recently demonstrated inference attacks caused by curious aggregators, which the majority of existing approaches are susceptible to.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热浪午后完成签到,获得积分10
1秒前
漂亮土豆完成签到,获得积分10
2秒前
4秒前
8秒前
wasiwan完成签到,获得积分10
8秒前
科研通AI2S应助圣晟胜采纳,获得10
9秒前
9秒前
长清发布了新的文献求助30
9秒前
彭于晏应助Jian采纳,获得20
9秒前
朴蒲萤荧完成签到,获得积分10
10秒前
文静紫霜完成签到 ,获得积分10
11秒前
xiang完成签到 ,获得积分10
11秒前
背后雨柏完成签到 ,获得积分10
14秒前
14秒前
15秒前
seata完成签到,获得积分10
16秒前
SCINEXUS应助科研通管家采纳,获得50
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
勿明应助科研通管家采纳,获得30
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
SCINEXUS应助科研通管家采纳,获得20
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
SCINEXUS应助科研通管家采纳,获得20
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
胖胖猪完成签到,获得积分10
20秒前
23秒前
田様应助Cz采纳,获得10
23秒前
科研通AI2S应助宇文数学采纳,获得10
24秒前
酷波er应助清新的苑博采纳,获得10
26秒前
Cz完成签到,获得积分20
27秒前
传奇3应助圣晟胜采纳,获得10
27秒前
韩帅发布了新的文献求助10
28秒前
薛定谔的猫完成签到,获得积分10
28秒前
29秒前
清秀的SONG完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849