Real-time and accurate meal detection for meal-assisting robots

餐食 机器人 食品科学 计算机科学 人工智能 化学
作者
Yuhe Fan,Lixun Zhang,Canxing Zheng,Yunqin Zu,Xingyuan Wang,Jinghui Zhu
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:: 111996-111996 被引量:4
标识
DOI:10.1016/j.jfoodeng.2024.111996
摘要

Meal detection is an important technology to ensure success rate of meal-assisting robotics. However, due to the strong interclass similarity and intraclass variability presented by appearance, gesture, and complex traits of meals in different scenarios, it is more challenging to real-time and accurate detect meals. To address the above problems, a novel method based on deformable convolution and CloFormer (CF) transformer to optimize the YOLOv8s was proposed to achieve efficient and accurate detection for meal. The YOLOv8s model architecture was enhanced by introducing deformable convolution to capture finer-grained spatial information, and the CloFormer module was introduced to capture high-frequency local and low-frequency global information through shared weights and context-aware weights, we notated it as DCF-YOLOv8s. The proposed method was evaluated on meal datasets, which were evaluated separately with baseline model and several state-of-the-art (SOTA) detection models, and results show that the proposed method achieves better performance. Specifically, the proposed method can achieve 88.5% mean average accuracy (mAP) at 43.6 frames per second (FPS), validating its efficiency and accuracy in meal detection for meal-assisting robotics. The effectiveness of introducing deformable convolution and CloFormer modules was verified by ablation experiments, and validating the importance of adopting data augmentation methods. The method proposed in this paper can improve success rate of meal fetching by intelligent meal-assisting robots and also contribute to the development of the field of food engineering to monitor the quality of meals and food management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lzf发布了新的文献求助10
刚刚
余晖霞光发布了新的文献求助10
刚刚
左左完成签到,获得积分10
刚刚
在水一方应助super chan采纳,获得10
刚刚
结实的纹完成签到,获得积分10
1秒前
1秒前
wyt完成签到,获得积分10
1秒前
堪明轩发布了新的文献求助10
2秒前
js110发布了新的文献求助10
2秒前
Zirong发布了新的文献求助10
2秒前
2秒前
Peng丶Young完成签到,获得积分10
3秒前
今后应助mate采纳,获得30
3秒前
我真的好漂亮完成签到,获得积分10
3秒前
5秒前
ch发布了新的文献求助10
5秒前
5秒前
搜集达人应助mm采纳,获得10
6秒前
wz完成签到,获得积分10
6秒前
追寻老九应助反方向的枫采纳,获得10
6秒前
7秒前
huang完成签到,获得积分20
8秒前
8秒前
研友_VZG7GZ应助尼德霍格采纳,获得10
8秒前
9秒前
甜蜜的翠柏完成签到,获得积分10
9秒前
英姑应助AWAY采纳,获得30
9秒前
科研通AI2S应助最长的旅途采纳,获得10
9秒前
9秒前
10秒前
10秒前
涛浪发布了新的文献求助10
10秒前
刘丽蓓发布了新的文献求助10
10秒前
12秒前
冷静的仙人掌完成签到,获得积分10
12秒前
13秒前
越战越勇发布了新的文献求助10
13秒前
小蘑菇应助Shandongdaxiu采纳,获得10
13秒前
遇见发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993