Real-time and accurate meal detection for meal-assisting robots

餐食 机器人 食品科学 计算机科学 人工智能 化学
作者
Yuhe Fan,Lixun Zhang,Canxing Zheng,Yunqin Zu,Xingyuan Wang,Jinghui Zhu
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:: 111996-111996 被引量:4
标识
DOI:10.1016/j.jfoodeng.2024.111996
摘要

Meal detection is an important technology to ensure success rate of meal-assisting robotics. However, due to the strong interclass similarity and intraclass variability presented by appearance, gesture, and complex traits of meals in different scenarios, it is more challenging to real-time and accurate detect meals. To address the above problems, a novel method based on deformable convolution and CloFormer (CF) transformer to optimize the YOLOv8s was proposed to achieve efficient and accurate detection for meal. The YOLOv8s model architecture was enhanced by introducing deformable convolution to capture finer-grained spatial information, and the CloFormer module was introduced to capture high-frequency local and low-frequency global information through shared weights and context-aware weights, we notated it as DCF-YOLOv8s. The proposed method was evaluated on meal datasets, which were evaluated separately with baseline model and several state-of-the-art (SOTA) detection models, and results show that the proposed method achieves better performance. Specifically, the proposed method can achieve 88.5% mean average accuracy (mAP) at 43.6 frames per second (FPS), validating its efficiency and accuracy in meal detection for meal-assisting robotics. The effectiveness of introducing deformable convolution and CloFormer modules was verified by ablation experiments, and validating the importance of adopting data augmentation methods. The method proposed in this paper can improve success rate of meal fetching by intelligent meal-assisting robots and also contribute to the development of the field of food engineering to monitor the quality of meals and food management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Apei发布了新的文献求助10
1秒前
1秒前
科研小趴菜完成签到,获得积分10
1秒前
攘攘发布了新的文献求助10
1秒前
小薛发布了新的文献求助10
2秒前
梦嘎丫完成签到 ,获得积分10
2秒前
2秒前
3秒前
li发布了新的文献求助10
5秒前
6秒前
7秒前
chuan完成签到,获得积分10
7秒前
呜哩哇啦完成签到,获得积分20
7秒前
8秒前
8秒前
FashionBoy应助hanchangcun采纳,获得10
9秒前
田様应助小薛采纳,获得10
9秒前
攘攘完成签到,获得积分10
10秒前
swx发布了新的文献求助10
10秒前
科研通AI6应助缓慢氧化采纳,获得10
11秒前
老实的美女完成签到,获得积分10
11秒前
11秒前
如意如意完成签到,获得积分10
11秒前
漫漫发布了新的文献求助10
12秒前
烟花应助中将采纳,获得10
12秒前
达芬吉发布了新的文献求助10
12秒前
sln发布了新的文献求助10
13秒前
优雅醉山发布了新的文献求助10
13秒前
许钟一完成签到,获得积分10
13秒前
14秒前
昏睡的幻露完成签到 ,获得积分10
14秒前
fhghhhjh发布了新的文献求助10
15秒前
贪玩大侠完成签到,获得积分10
15秒前
Zeee应助求索采纳,获得10
16秒前
余红完成签到,获得积分10
16秒前
17秒前
hanchangcun完成签到,获得积分10
18秒前
20秒前
21秒前
sxb10101应助li采纳,获得50
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403