Real-time and accurate meal detection for meal-assisting robots

餐食 机器人 食品科学 计算机科学 人工智能 化学
作者
Yuhe Fan,Lixun Zhang,Canxing Zheng,Yunqin Zu,Xingyuan Wang,Jinghui Zhu
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:: 111996-111996 被引量:4
标识
DOI:10.1016/j.jfoodeng.2024.111996
摘要

Meal detection is an important technology to ensure success rate of meal-assisting robotics. However, due to the strong interclass similarity and intraclass variability presented by appearance, gesture, and complex traits of meals in different scenarios, it is more challenging to real-time and accurate detect meals. To address the above problems, a novel method based on deformable convolution and CloFormer (CF) transformer to optimize the YOLOv8s was proposed to achieve efficient and accurate detection for meal. The YOLOv8s model architecture was enhanced by introducing deformable convolution to capture finer-grained spatial information, and the CloFormer module was introduced to capture high-frequency local and low-frequency global information through shared weights and context-aware weights, we notated it as DCF-YOLOv8s. The proposed method was evaluated on meal datasets, which were evaluated separately with baseline model and several state-of-the-art (SOTA) detection models, and results show that the proposed method achieves better performance. Specifically, the proposed method can achieve 88.5% mean average accuracy (mAP) at 43.6 frames per second (FPS), validating its efficiency and accuracy in meal detection for meal-assisting robotics. The effectiveness of introducing deformable convolution and CloFormer modules was verified by ablation experiments, and validating the importance of adopting data augmentation methods. The method proposed in this paper can improve success rate of meal fetching by intelligent meal-assisting robots and also contribute to the development of the field of food engineering to monitor the quality of meals and food management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南关三完成签到,获得积分10
刚刚
王醉山完成签到,获得积分10
刚刚
时之砂发布了新的文献求助10
刚刚
WJ1989发布了新的文献求助10
2秒前
Sicie完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
cmy完成签到,获得积分10
4秒前
对照完成签到 ,获得积分10
4秒前
wang完成签到,获得积分10
4秒前
duts完成签到 ,获得积分10
4秒前
巧克力酱发布了新的文献求助10
5秒前
小灰灰完成签到,获得积分10
5秒前
遇安完成签到,获得积分10
5秒前
研友_LjDyNZ完成签到,获得积分10
5秒前
泪雨煊完成签到,获得积分10
6秒前
robi发布了新的文献求助10
6秒前
Yoo.完成签到,获得积分10
8秒前
大个应助oo采纳,获得10
9秒前
18746005898完成签到 ,获得积分10
10秒前
HanQing完成签到,获得积分10
10秒前
磊2024完成签到,获得积分10
10秒前
sara完成签到,获得积分10
10秒前
科研菜鸡完成签到 ,获得积分10
10秒前
王359完成签到 ,获得积分10
10秒前
咪咪完成签到,获得积分10
10秒前
gwh68964402gwh完成签到,获得积分10
11秒前
美满的机器猫完成签到,获得积分10
11秒前
小灰灰发布了新的文献求助10
11秒前
QQ完成签到,获得积分10
11秒前
11秒前
drywell完成签到,获得积分10
13秒前
朵朵完成签到,获得积分10
14秒前
nsy完成签到,获得积分10
14秒前
Lucas应助个性问寒采纳,获得10
15秒前
sanmu发布了新的文献求助10
15秒前
16秒前
江山月明完成签到,获得积分10
16秒前
希望天下0贩的0应助小申采纳,获得10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261895
求助须知:如何正确求助?哪些是违规求助? 2902601
关于积分的说明 8320986
捐赠科研通 2572525
什么是DOI,文献DOI怎么找? 1397741
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632341