Real-time and accurate meal detection for meal-assisting robots

餐食 机器人 食品科学 计算机科学 人工智能 化学
作者
Yuhe Fan,Lixun Zhang,Canxing Zheng,Yunqin Zu,Xingyuan Wang,Jinghui Zhu
出处
期刊:Journal of Food Engineering [Elsevier]
卷期号:: 111996-111996 被引量:4
标识
DOI:10.1016/j.jfoodeng.2024.111996
摘要

Meal detection is an important technology to ensure success rate of meal-assisting robotics. However, due to the strong interclass similarity and intraclass variability presented by appearance, gesture, and complex traits of meals in different scenarios, it is more challenging to real-time and accurate detect meals. To address the above problems, a novel method based on deformable convolution and CloFormer (CF) transformer to optimize the YOLOv8s was proposed to achieve efficient and accurate detection for meal. The YOLOv8s model architecture was enhanced by introducing deformable convolution to capture finer-grained spatial information, and the CloFormer module was introduced to capture high-frequency local and low-frequency global information through shared weights and context-aware weights, we notated it as DCF-YOLOv8s. The proposed method was evaluated on meal datasets, which were evaluated separately with baseline model and several state-of-the-art (SOTA) detection models, and results show that the proposed method achieves better performance. Specifically, the proposed method can achieve 88.5% mean average accuracy (mAP) at 43.6 frames per second (FPS), validating its efficiency and accuracy in meal detection for meal-assisting robotics. The effectiveness of introducing deformable convolution and CloFormer modules was verified by ablation experiments, and validating the importance of adopting data augmentation methods. The method proposed in this paper can improve success rate of meal fetching by intelligent meal-assisting robots and also contribute to the development of the field of food engineering to monitor the quality of meals and food management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ldy完成签到 ,获得积分10
刚刚
qqqq完成签到,获得积分10
1秒前
3秒前
4秒前
朴素亦绿完成签到,获得积分10
4秒前
超级绫完成签到 ,获得积分10
5秒前
5秒前
HPP123发布了新的文献求助10
6秒前
Criminology34应助端庄亦巧采纳,获得20
6秒前
一灯大师发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
清澈发布了新的文献求助10
9秒前
10秒前
琦琦z完成签到,获得积分10
10秒前
科研通AI6.1应助郑浚杳采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
三三三完成签到,获得积分20
13秒前
健康的梦旋完成签到,获得积分10
13秒前
16秒前
zwj28完成签到,获得积分10
17秒前
顺利毕业完成签到 ,获得积分10
17秒前
17秒前
Wang关注了科研通微信公众号
19秒前
22秒前
魁梧的凌瑶完成签到,获得积分10
23秒前
清澈完成签到,获得积分10
23秒前
HEROER发布了新的文献求助10
23秒前
英姑应助顺利的囧采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
wy.he应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861